
FUZZ-IEEE 2007 

IEEE International Conference 
on 

Fuzzy Systems

Tutorial 5: Uncertainty and Information























 
 
 

1 
 

 

Uncertainty and Information: 
Two Faces of Nondeterministic Systems 

 
George J. Klir 

 
Department of Systems Science & Industrial Engineering 

Binghamton University − SUNY 
Binghamton, New York 13902, USA 

E-mail: gklir@binghamton.edu 
 

Abstract 
 
A research program whose objective is to study uncertainty and information in all their 
manifestations, primarily within the context of nondeterministic systems, was introduced in the 
early 1990’s under the name “generalized information theory”. This research program is based 
on a two-dimensional expansion of the probabilistic framework of classical information theory. 
In one dimension, additive probability measures are expanded to various nonadditive measures. 
In the other dimension, the formalized language of classical set theory is expanded to more 
expressive formalized languages that are based on fuzzy sets of various types. As in classical 
information theory, uncertainty is the prinary concept in generalized information theory and 
information is defined in term 
s of uncertainty reduction. The paper introduces principal ideas of generalized information 
theory and examines the role of generalized information theory in systems science. 
 
Keywords: Nondeterministic systems, information-based uncertainty, uncertainty-based 
information, generalized information theory, generalized measures, fuzzy sets, imprecise 
probabilities, measures of uncertainty, principles of uncertainty, systems science. 

 

1. Introduction 
One of the insights emerging from systems science is the recognition that knowledge is 
organized, by and large, in terms of systems of various categories (in the sense of the 
mathematical theory of categories). Systems in each category are knowledge structures of a 
particular type. Every particular system is constructed within an experimental frame, which 
consists of a chosen set of variables, their recognized state sets, and a medium within which 
states of the chosen variables change (such as time, space, or a population). A system based on a 
chosen experimental frame expresses, in general, some type of constraint among the variables, 
which is characteristic of the category to which the system belongs. This constraint is utilized, in 
a purposeful way, for restricting states of some variables (output variables) on the basis of known 
states of other variables (input variables). Some of the most typical purposes for which systems 
are constructed include prediction, retrodiction, diagnosis, control, decision making, policy 
making, and planning. 
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It turns out that the mathematical concept of a relation is sufficiently general to express any type 
of constraint among variables. When for each state of input variables, states of all output 
variables are uniquely determined from the relation of a given system, the system is called a 
deterministic system; otherwise, it is called a nondeterministic system. It is well known that the 
class of deterministic systems represents only a very small fraction of all conceivable systems. 
While deterministic systems played an important role in early stages of the history of science, 
nondeterministic systems are by far more prevalent in contemporary science and technology. 
 
Each nondeterministic system inevitably involves some uncertainty, which is associated with the 
purpose for which the system was constructed. We may thus distinguish predictive uncertainty, 
retrodictive uncertainty, prescriptive uncertainty, diagnostic uncertainty, decision uncertainty, 
and the like. The relevant uncertainty (predictive, prescriptive, etc.) must be properly 
incorporated into the formal description of each nondeterministic system.  
 
There are two classical ways of formalizing uncertainty. In one of them, uncertainty is expressed 
by a possibility function that partitions the set of all relevant states (predictions, diagnoses, etc.) 
into two subsets. One subset consists of those states that are considered possible; the other one 
consists of those that, under given evidence, are not possible. In this case, uncertainty is 
proportional in some way to the size of the set of possible states. Maximum uncertainty is 
obtained when all relevant states are possible. Minimum uncertainty is obtained when only one 
of the relevant states is possible. This way of formalizing uncertainty is known in the literature as 
classical (crisp) possibility theory. 
 
The second classical way of formalizing uncertainty is based on probability functions, each of 
which distributes the value 1 to relevant states according to their relative strength of support by 
given evidence. The maximum uncertainty is obtained when the value is distributed equally to all 
relevant states. The minimum uncertainty is obtained when the full value of 1 is allocated to one 
of the relevant states. This way of formalizing uncertainty is known in the literature as classical 
probability theory. 
 
Uncertainty in these two classical theories of uncertainty is viewed as a manifestation of some 
information deficiency within a given system. It is thus reasonable to refer to it as information-
based uncertainty. Information, on the other hand, may be viewed in this context as the capacity 
to reduce relevant uncertainty. It is thus reasonable to refer to it as uncertainty-based 
information. The concepts of uncertainty and information are thus closely connected when 
dealing with systems. To reduce uncertainty, we need to obtain relevant information. This 
requires that some action be taken (performing a relevant experiment, conducting a medical test, 
searching an archive for a relevant historical document, and the like). If an outcome is produced 
by the action that reduces the uncertainty involved, then the amount of information obtained by 
the action may be viewed as equivalent to the amount of reduced uncertainty. To measure 
uncertainty-based information is thus contingent on our ability to measure uncertainty. 
 
Since the mid 20th century, the two classical theories of uncertainty have increasingly been 
recognized as insufficient for dealing adequately with uncertainty (and uncertainty-based 
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information) in systems. Various attempts to broaden the classical uncertainty theories were 
eventually integrated under the name generalized information theory.  

 

2. Generalized Information Theory 
Generalized Information Theory (GIT) is a research program whose objective is to develop a 
formal treatment of the interrelated concepts of uncertainty and information in all their varieties; 
it is a generalization of the two branches of classical information theory, which are based, 
respectively, on the notion of possibility (crisp) and probability. The aims of GIT were 
introduced in the early 1990s [Klir, 1991]. A comprehensive and up-to-date coverage of results 
obtained by research within GIT prior to 2006 is the subject of a recent book [Klir, 2006]. 
 
GIT is an outcome of two grand generalizations in mathematics that emerged in the second half 
of the 20th century. One of them is the generalization of classical measure theory [Halmos. 1950] 
to the theory of generalized measures by abandoning the requirement of additivity. This 
generalization was suggested first by Choquet [1953-54]. The second one is the generalization of 
classical set theory to the theory of fuzzy sets by abandoning the requirement of sharp 
boundaries between a set and its complement. This very radical generalization in mathematics 
was suggested first by Zadeh [1965]. 
 
A blueprint for the GIT research program is based on a two-dimensional expansion of the 
classical uncertainty and information theories, which utilizes these two mathematical 
generalizations. In one dimension, additive probability measures, which are inherent in classical, 
probability-based information theory, are expanded to various types of nonadditive measures. In 
the other dimension, the formalized language of classical set theory, within which both of the 
classical uncertainty theories are formalized, is expanded to more expressive formalized 
languages that are based on fuzzy sets of various types.  
 
Each possible uncertainty and information theory within the expanded framework of GIT is 
characterized by choosing a particular formalized language and by expressing relevant 
uncertainty in this language by a generalized measure of some type. Clearly, the number of 
distinct theories within the expanded framework grows very rapidly with the number of 
considered types of formalized languages and the number of considered types of generalized 
measures. It turns out that this rapidly growing diversity of theories subsumed under the GIT 
framework is balanced by their unity, which is manifested by their many common properties. 
The diversity of GIT offers an extensive inventory of distinct theories, each characterized by 
specific assumptions. This allows us to choose, in any given application context, a theory whose 
assumptions are in harmony with the application of concern. The unity of GIT, on the other 
hand, allows us to work within GIT as a whole. That is, it allows us to move from one theory to 
another as needed. 

 
3. Special Theories Within GIT 

All special theories subsumed under GIT are based on various special types of monotone 
measures. For the sake of simplicity, this paper is restricted to monotone measures defined on the 
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power set, P(X), of a finite set X. In this restricted case, a monotone measure is any set function 
µ: P(X) → [0, 1] that satisfies the following three requirements: (i) µ(∅) = 0; (ii) µ(X) = 1; and 
(iii) for all A,B ∈ P(X), if A ⊆ B then µ(A) ≤ µ(B). Each special theory is then defined by 
restricting monotone measures via additional requirements. For example, when µ(A∪B) ≥ µ(A) + 
µ(B) for all A,B ∈ P(X), measure µ is referred to as a superadditive measure and when µ(A∪B) ≤ 
µ(A) + µ(B) it is  called a subadditive measure. 
 
Observe that this definition of monotone measures is formulated in terms of classical sets. It can 
be fuzzified – i.e. reformulated in terms of fuzzy sets of some type. Fuzzy sets, in general, are 
sets whose boundaries are not required to be sharp. That is, they allow us to distinguish degrees 
(or grades) of membership. Each fuzzy set is fully characterized by a particular membership 
function A: D → R. For each d ∈ D, A(d) is viewed as the degree of membership of object d in 
fuzzy set A or, alternatively, as the degree of compatibility of d  with a concept represented by A. 
Distinct types of fuzzy sets are distinguished by distinct types of classical sets D (domain) and R 
(range). The most common type of fuzzy sets, referred to in the literature as standard fuzzy sets, 
is based on membership functions A: X → [0, 1], where objects of X are not fuzzy sets. When 
objects of X are fuzzy sets, set A is called a level-2 fuzzy set. When R is the set of subintervals of 
[0, 1], set A is called an interval-valued fuzzy set; when they are fuzzy subintervals of [0, 1], set 
A is called a type-2 fuzzy set. Several additional types of fuzzy sets have been recognized in the 
literature [Klir, 2006], but their coverage is beyond the scope of this paper. 
 
In order to fully develop a particular uncertainty and information theory T requires that issues at 
each of the following four levels be adequately addressed: 
 
1. Uncertainty functions u of the theory T are characterized via appropriate axioms. Examples 

of functions u are probability measures and possibility measures of the classical theories. 
2. Calculus is developed for dealing with functions u. An example is the calculus of classical 

probability theory. 
3. A justified functional U in theory T is found, which for each particular function u measures 

the amount of of uncertainty associated with u. When a particular unit of measurement is 
chosen, functional U is required to be unique. A visible example of functional U is the well-
known Shannon entropy in classical probability theory [Shannon, 1948]. 

4. Functional U is utilized as an abstract measuring instrument for dealing with various 
problems in which theory T is involved. An example is the use of the Shannon entropy in the 
principles of maximum and minimum entropy in classical probability theory [Kapur, 1989, 
Christensen, 1980-81].  

 
Among the many uncertainty theories that are possible within the expanded conceptual 
framework of GIT, only a few theories have been sufficiently developed so far. By and large, 
these are theories based on various types of monotone measures, but they are still expressed in 
the language of classical set theory. Fuzzification of these theories, which can be done in 
different ways, has been explored only to some degree [Klir, 2006]. 
 
 

 



 
 
 

5 
 

 

4. Theories of Imprecise Probabilities 
 
One important result of research in the area of GIT is that the tremendous diversity of uncertainty 
theories that emerge from the expanded framework is made tractable due to some key properties 
that are invariant across the whole spectrum or, at least, within broad classes of uncertainty 
theories. One such class consists of theories that can be viewed as theories of imprecise 
probabilities [Walley, 1991]. 
 
All theories of imprecise probabilities that are based on classical set theory share some common 
characteristics. One of them is that evidence within each theory is fully described by a lower 
probability function P* or, alternatively, by an upper probability function P*. These functions are 
always regular monotone measures [Wang and Klir, 1992] that are superadditive and 
subadditive, respectively, and  
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In the various special theories of uncertainty, they possess additional special properties. 

When evidence is expressed (at the most general level) in terms of an arbitrary convex set C of 
probability distribution functions p (often referred to as a credal set) on a finite set X, functions 
P* and P* associated with C are determined for each A ∈ P(X) by the formulas 
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for each p ∈ C and each A ∈ P(X), it follows that  
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Due to this property, functions P*   and P* are called dual (or conjugate). One of them is sufficient 
for capturing given evidence; the other one is uniquely determined by the duality equation. It is 
common to use the lower probability function to capture the evidence.  
 
It is well known that any given lower probability function P* is uniquely represented by a set-
valued function m for which m(∅) = 0 and  
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This function is called a Möbius representation of P* when it is obtained for all A ∈ P(X) via the 
Möbius transform 
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The inverse transform is defined for all A ∈ P(X) by the formula 



 
 
 

6 
 

 

.)()(* !
"

=
ABB

BmAP  

It follows directly from the duality equation that 
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for all A ∈ P(X). 

Assume now that evidence is expressed in terms of a given lower probability function P*. Then, 
the set of probability distribution functions that are consistent with P*, C(P*), which is always 
closed and convex, is defined as follows: 
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A well-defined category of theories of imprecise probabilities is based on Choquet capacities of 
various orders [Choquet, 1953-54]. The most general theory in this category is the theory based 
on capacities of order 2. Here, the lower and upper probabilities, P* and P*, are monotone 
measures which satisfy the inequalities 
 

P*(A∪B) ≥ P*(A) + P*(B) − P*(A∩B), 

      P*(A∩B) ≤ P*(A) + P*(B) − P*(A∪B, 

for all A, B ∈ P(X). Less general uncertainty theories are then based on capacities of higher 
orders. For each k > 2, the lower and upper probabilities, P* and P*, satisfy the inequalities 
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for all families of k subsets of X, where Nk = {1, 2, …, k}. Clearly, if k' > k, then the theory based 
on capacities of order k' is less general than the one based on capacities of order k. The least 
general of all these theories is the one in which the inequalities are required to hold for all k ≥ 2 
(the underlying capacity is said to be of order ∞). This theory, which was extensively developed 
by Shafer [1976], is usually referred to as evidence theory or Dempster-Shafer theory (DST). In 
this theory, lower and upper probabilities are called belief and plausibility measures. An 
important feature of DST is that the Möbius representation of evidence m (usually called a basic 
probability assignment function in this theory) is a nonnegative function (m(A) ∈ [0,1]). DST is 
thus closely connected with the theory of random sets [Molchanov, 2004]. Any set A ∈ P(X) for 
which m(A) > 0 is often called in DST a focal element, and the set of all focal elements with the 
values assigned to them by function m is called a body of evidence.  When we work with nested 
families of focal elements, we obtain a theory of graded possibilities, which is a generalization of 
classical possibility theory [De Cooman, 1997; Klir, 2006].  
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In another important theory, which is computationally more efficient than DST, lower and upper 
probabilities P* and P* are determined for all sets A ∈ P(X) by intervals [l(x), u(x)] of 
probabilities on singletons (x ∈ X). Clearly, l(x) = ]10[}){( , xP !"  and u(x) = ]10[})({* , xP ! . 
Each given tuple of probability intervals, I = 〈 )]()([ x, uxl |x ∈ X〉, is associated with a closed 
convex set, C(I), of probability distribution functions, p, defined as follows: 
 

C(I)  = {p(x) | x ∈ X, p(x) ∈ )]()([ x, uxl , !
"

=
Xx

xp 1)( }. 

Sets defined in this way are clearly special credal sets. Their special feature is that they always 
form an (n−1)–dimensional polyhedron, where n = |X|. In general, the polyhedron may have c 
extreme points (vertices), where 

n ≤ c ≤ n(n −1), 

and each probability distribution function contained in the set can be expressed as a linear 
combination of these extreme points  [De Campos at al., 1994]. 
 
A given tuple I of probability intervals may be such that some combinations of values taken from 
the intervals do not correspond to any probability distribution function. This indicates that the 
intervals are unnecessarily broad. To avoid this deficiency, the concept of reachability was 
introduced in the theory.  
 
A given tuple I is called reachable (or feasible) if and only if for each x ∈ X and every value v(x) 
∈ [l(x), u(y)] there exists a probability distribution function p for which p(x) = v(x). The 
reachability of any given tuple I can be easily checked: the tuple is reachable if and only if it 
passes the following tests: 
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 for all y ∈ X. 

If I is not reachable, it can be easily converted to the tuple I’ = 〈[l’(x), u’(y)] | x∈ X〉 of reachable 
intervals by the formulas 
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for all x ∈ X. 

Given a reachable tuple I of probability intervals, the lower and upper probabilities are 
determined for each A ∈ P(X) by the formulas 
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It is known that the theory based on reachable probability intervals and Dempster-Shafer theory 
are not comparable in terms of their generalities. However, they both are subsumed under a 
theory based on Choquet capacities of order 2 (see Figure 1).  
 
Although Choquet capacities of order 2 do not capture all credal sets, they subsume all the other 
special uncertainty theories that are examined in this paper (Figure 1). They are thus quite 
general. Their significance is that they are computationally easier to handle than arbitrary credal 
sets. In particular, it is easier to compute C(P*) when P* is a Choquet capacity of order 2. 
 
Let X = {x1, x2, …, xn} and let σ = (σ(x1), σ(x2), …, σ(xn)) denote a permutation by which 
elements of X are reordered. Then, it was established [De Campos and Bolaños, 1989] that for 
any given Choquet capacity of order 2, C(P*) is determined by its extreme points, which are 
probability distributions pσ  computed as follows: 
 
pσ(σ(x1)) = P* ({σ(x1)}) , 

pσ(σ(x2)) = P* ({σ(x1), σ(x1)} – P* ({σ(x1)})  
..................................................................... 
pσ(σ(xn-1)) = P* ({σ(x1),…, σ(xn-1)} – P* ({σ(x1), …., ({σ(xn-2)}) , 

pσ(σ(xn-1)) = P* ({σ(x1),…, σ(xn)} – P* ({σ(x1), …., ({σ(xn-1)}) . 

Each permutation defines an extreme point of C(P*), but different permutations can give rise to 
the same point. The set of distinct probability distributions pσ is often called an interaction 
representation of P* [Grabisch, 2000]. 
 
5. Measures of Uncertainty: An Overview 
In each given uncertainty theory, a considered functional U for measuring uncertainty must 
satisfy several intuitively essential axiomatic requirements to be acceptable as an uncertainty 
measure in the theory. Specific mathematical formulation of each of these requirements depends 
on the uncertainty theory involved. However, the requirements can be described informally, 
independent of the various uncertainty calculi, in the following generic form: 
 
1. Subadditivity − the amount of uncertainty embedded in a joint uncertainty function (defined 

on a Cartesian product) must be smaller than or equal to the sum of the amounts of 
uncertainty embedded in the associated marginal uncertainty functions. 

2. Additivity − given two universal sets and marginal uncertainty functions defined on them that 
are independent, the sum of the amounts of uncertainty embedded in these functions must be 
equal to the amount of uncertainty embedded in the associated joint uncertainty function 
(defined on the Cartesian product of the two universal sets). 
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Figure 1.  Ordering of principal monotone measures used for representing imprecise probabilities  
by their levels of generality. 
 

3. Continuity − an uncertainty measure must be a continuous functional. 
 
4. Range − the range of the amounts of uncertainty embedded in uncertainty functions of a 

given uncertainty theory must be a closed interval [0, r] of real numbers, where 0 
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corresponds to full certainty and the value r depends on the chosen measurement unit and the 
size of the universal set involved. 

5. Expansibility − expanding the universal set by alternatives that are not supported by given 
evidence must not affect the amount of uncertainty. 

6. Branching/Consistency − when the amount of uncertainty embedded in uncertainty functions 
of a given uncertainty theory can be computed in several distinct ways, all of which conform 
to the calculus of the theory, the results must be the same (consistent). 

7. Monotonicity − when uncertainty functions in a given uncertainty theory can be ordered in 
the same way as we can intuitively order the amount of evidence, the uncertainty measure 
must preserve this ordering. 

8. Measurement unit − a suitable measurement unit is defined by specifying what the amount of 
uncertainty should be for a particular (and usually very simple) uncertainty function. 

 
When distinct types of uncertainty coexist in a given uncertainty theory, as is common in the 
various non-classical uncertainty theories, it is not necessary that these requirements be satisfied 
by each uncertainty type. However, they must be satisfied by a measure that appropriately 
aggregates measures of the individual uncertainty types. 
 
The strongest justification of a functional as a meaningful uncertainty measure of a considered 
type of uncertainty in a given uncertainty theory is obtained when we can prove that it is the only 
functional that satisfies all the relevant axiomatic requirements formulated in the calculus of the 
theory. 
 
It is well established that uncertainty in classical possibility theory is quantified by the Hartley 
measure [Hartley, 1928]. For each nonempty and finite set A ⊆ X of possible alternatives, the 
Hartley measure H(A), is defined by the formula 
 

H(A) = log2A, 

where |A| denotes the cardinality of A. Since H(A) = 1 when A= 2, H measures uncertainty in 
bits. The type of uncertainty measured by H is usually called nonspecificity. 
 
In classical probability theory, a justifiable measure of uncertainty was derived by Shannon 
[1948]. This measure, which is usually referred to as Shannon entropy and denoted by S, is 
defined for each given probability distribution function p on a finite set X by the formula 
 

!
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Since S(p) = 1 when X= 2 and p(x) = 1–p(x) = 0.5, S measures uncertainty in bits. However, 
the type of uncertainty measured by the Shannon entropy is different from the uncertainty type 
quantified by the Hartley measure; it is well captured by the term conflict.  
When the classical uncertainty theories are generalized, both types of uncertainty coexist. This 
required that the Hartley measure and Shannon entropy be properly generalized in the various 
theories.  
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The Hartley measure was first generalized for graded possibilities by Higashi and Klir [1983] 
and later to Dempster-Shafer theory by Dubois and Prade [1985]. Its generalized form, GH, is 
defined in terms of the Möbius representation, m, by the formula 
 

AAmmGH

XA

!
"

= 2log)()(  

The uniqueness of this generalized Hartley measure GH was proven for graded possibilities by 
Klir and Mariano [1987 and for DST by Ramer [1987]. 
 
Efforts to generalize the Shannon entropy to DST were less successful. Although several 
intuitively promising candidates for the generalized Shannon measure, GS, were proposed in the 
literature in the 1980s and early 1990, each of them was found to violate the essential property of 
subadditivity. This would have been acceptable if subadditivity were satisfied for the sum GH + 
GS. Unfortunately, this was not the case for any of the proposed measures. A digest of these 
frustrating efforts is given in Klir [2006].   
     
In the early 1990s, the unsuccessful attempts to generalize the Shannon entropy in DST were 
replaced with attempts to find an aggregated measure of both types of uncertainty. An aggregate 
measure that satisfies all the required properties (additivity, subadditivity, monotonicity, proper 
range, etc.) was eventually found around the mid 1990s by several authors (see Klir [2006] for 
details). This aggregate uncertainty measure is a functional S* that for each belief function Bel in 
DST is defined as follows: 

S* (Bel) = 
BelP

max  {−∑x∈X p(x) log2 p(x)}, 

where the maximum is taken over the set PBel of all probability distribution functions p that 
dominate the given function Bel (i.e., Bel(A) ≤ ∑x∈A p(x) for all A ⊆ X). This functional can be 
readily generalized to any given convex set of probability distributions, as was shown by Abellán 
and Moral [(2003]. Useful algorithms for computing S* were developed by various authors for 
DST, reachable interval-valued probability distributions, and the theory based on Choquet 
capacities of order 2 [Klir. 2006]. 
 
 Although the functional S* is acceptable on mathematical grounds as an aggregate measure of 
uncertainty in any uncertainty theory where evidence can be represented in terms of arbitrary 
convex sets of probability distributions, it is highly insensitive to changes in evidence due to its 
aggregated nature and, moreover, it does not show explicitly measures of the two coexisting 
types of uncertainty  nonspecificity and conflict.  It is thus desirable to disaggregate it. Clearly, 
S* = GH + GS, where GH and GS denote, respectively, a generalized Hartley measure 
(measuring nonspecificity) and a generalized Shannon entropy (measuring conflict). Since S* and 
GH are well established, at least in DST, it is suggestive to define GS indirectly as the difference 
S* − GH, providing that it is nonnegative. It was proven by Smith [2000] that S* − GH ≥ 0 and, 
hence, it is meaningful to take GS = S* − GH as the generalized Shannon entropy. Then, the 
disaggregated total uncertainty measure, TU, is defined as the pair 
 

TU = 〈GH, GS 〉, 
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where GS = S* − GH.  Now, it is guaranteed that GH + GS satisfies all the required mathematical 
properties (since GH + GS = S*) and it does not matter whether each of the two components of 
TU satisfies them as well.  This is important since subadditivity of GH is not guaranteed beyond 
DST. 
 
The idea of disaggregating S* into two components, measures of nonspecificity and conflict, 
opened new possibilities. One of them is based on the recognition that the following two 
functionals can be defined for each credal set C: 
 

! ""
=

XxCp

* xpxp-C S )}(log)({max)( 2 , 

! ""
=

XxCp
xpxp-C S )}(log)({min)( 2* . 

 The significance of these functionals and their difference, S*− S*, for capturing uncertainty 
associated with convex sets of probability distributions was first discussed by Kapur [1994] and 
Kapur et al. [1995]. Their role for disaggregating S*  was suggested by Smith [2000] and Klir and 
Smith [2001]. More recently, Abellán and Moral [2005] further investigated properties of the 
difference S*− S* and described an algorithm for calculating the value of S*, which is applicable 
to any convex set of probability distributions whose lower probability function is a Choquet 
capacity of order 2. They suggested that it is reasonable to view this difference as an alternative 
measure of nonspecificity. That is, they suggested defining a measure of nonspecificity, N, for 
each credal set C of probability distributions by the formula 
 

N(C) = S* (C) − S* (C). 

They also showed that functional N possesses the following properties: 
 
1. N(C) ∈ [0, log2 |X|], where X denotes the set of all alternatives (elementary events) on which 

the probability distributions in C are defined: N(C) = 0 when C consists of a single 
probability distribution; N(C) = log2 |X| when C consists of all probability distributions that 
can be defined on X (total ignorance expressed by vacuous probabilities). 

2. N is continuous. 
3. N is additive. 
 
These properties, which every measure of nonspecificity must possess, motivated the suggestion 
that this functional may be viewed as a measure of nonspecificity. Unfortunately, contrary to the 
generalized Hartley measure, functional N violates the essential requirement of subadditivity in 
virtually any uncertainty theory, including DST. This means that N is not acceptable alone as a 
measure of nonspecificity. However, when considered as one component of a disaggregated total 
uncertainty measure, then the lack of subadditivity of the individual components is of no 
consequence. It only matters that the aggregated uncertainty S* satisfies all the essential 
requirements, including subadditivity. This suggests defining an alternative disaggregated total 
uncertainty, aTU, as the pair 
                                                                               aTU(C) = 〈 S* (C) − S* (C), S* (C)〉.                                       
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Observe that the first component of aTU is the alternative nonspecificity measure N, while the 
second component, S*, is a generalized Shannon measure (a general measure of conflict). When 
the two components are aggregated, we obtain S* and, clearly, this functional satisfies all the 
essential mathematical requirements. Hence, even though neither of the components of aTU is 
subadditive, this does not matter since the aggregated uncertainty S* is subadditive. 
 
It is interesting to observe that the functional S* has often been considered as one of the 
candidates for the generalized Shannon entropy. It was dismissed since it is not subadditive, and 
neither it is subadditive when aggregated with the generalized Hartley measure GH. However, it 
is perfectly justifiable when aggregated with the alternative measure of nonspecificity N. In fact, 
some of the other candidates considered for the generalized Shannon entropy could now be 
considered on similar grounds, although the functional S* seems to be better justified than its 
competitors not only by its properties, but also by its behavior and its applicability to all credal 
sets. Nevertheless, viewing the measure of nonspecificity, in general, as the difference of the 
aggregate uncertainty S* and the generalized Shannon entropy GS, opens a new area of research, 
whose purpose is to compare the various candidates for GS with the functional S*. 
 
6. The Role of GIT in Systems Science 

Uncertainty-based information, which is the subject of investigation in GIT, does not capture the 
rich notion of information in human communication and cognition, but it is essential for dealing 
with systems. It allows us, for example, to examine informativeness of comparable systems 
(constructed within the same experimental frame) with respect to answers given by the systems 
to various questions regarding predictions, retrodictions, diagnoses, etc. When asked a relevant 
question, every system gives some answer. If the answer is not unique, it involves some 
uncertainty. This uncertainty is generally smaller than its counterpart based solely on the 
experimental frame of the system. The difference between these uncertainties expresses then the 
degree of informativeness of the system with respect to the given question. 
 
In systems science, the various functionals U for measuring uncertainty, which are surveyed in 
Sec. 5, are particularly useful in their conditional forms. While functionals U are applied to 
different types of uncertainty functions u in different uncertainty theories, it turns out that the 
relationship between their conditional, joint and marginal forms is invariant with respect to the 
type of uncertainty function u involved. To describe this relationship generically, it is useful (and 
a common practice in the literature) to identify only sets on which functions u are defined rather 
than the functions themselves. For example, if a joint uncertainty function u is defined on X×Y, 
we write U(X×Y) instead of U(u). Similarly, we write U(X) and U(Y) for marginal uncertainties 
instead of U(uX) and U(uY). Clearly, X×Y, X, and Y are not arguments for computing the 
respective type of uncertainty U; they are just indicators of the sets on which some type of 
uncertainty function u is defined. Using this convenient generic notation, conditional uncertainty, 
denoted as U(X|Y) and U(Y|X), are then determined in all theories of uncertainty by the following 
equations: 

U(X|Y) = U(X×Y) − U(Y), 

U(Y|X) = U(X×Y) − U(X). 
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In the context of systems science, sets X and Y in these equations may be Cartesian products of 
several sets, each representing overall states of some chosen subsets of variables of a given 
system. If U(X|Y) = U(X) and U(Y|X) = U(Y), then the chosen subsets of variables do not 
interact. In all other cases, U(X|Y) < U(X) and U(Y|X) < U(Y), which means that the two subsets 
of variables do interact. The strength of this interaction is measured by another functional, T, 
which is defined by the equation 

T(X,Y) = U(X) + U(Y) − U(X×Y). 

This functional, which is usually referred to as information transmission, can also be expressed 
in terms of differences between the marginal uncertainties and their conditional counterparts: 
 

T(X,Y) = U(X) − U(X|Y), 

T(X,Y) = U(Y) − U(Y|X). 

The capabilities of measuring conditional uncertainties and information transmissions for any 
groups of variables of a given systems are essential for dealing with nondeterministic systems. 
These capabilities have not been broadly utilized as yet, even though their significance was 
recognized a long time ago in terms of the classical uncertainty and information theories by 
Ashby [1965, 1970, 1972], Conant [1976] and others. It is fair to say that the classical theories 
are rather restrictive. Results emerging from GIT open many new possibilities and allow us to 
deal with nondeterministic systems in a broader and more natural way. 
 
Although the utility of the various functionals for measuring uncertainty and information is as 
broad as the utility of any measuring instrument, their role is particularly significant in the 
following four principles of uncertainty: 
 

1. principle of minimum uncertainty; 
2. principle of maximum uncertainty; 
3. principle of requisite generalization; 
4. principle of uncertainty invariance. 
 

In general, these are epistemologically based prescriptive procedures that address such 
methodological issues involving nondeterministic systems that cannot be resolved by using 
calculi of the individual uncertainty theories. Due to the connection between information-based 
uncertainty and uncertainty-based information, these principles also can be interpreted as 
principles of information. Their role is illustrated in Figure 2, where T2 denotes an uncertainty 
theory that is assumed to be more general than uncertainty theory T1.  
 
The principle of minimum uncertainty is basically an arbitration principle. It facilitates the 
selection of the most informative systems from solution sets obtained in problems of systems 
simplification, conflict-resolution, and the like. The principle of maximum uncertainty facilitates 
ampliative reasoning in dealing with systems problems. This is reasoning in which conclusions 
are not entailed in the given premises. A typical example is the problem of identifying an overall 
system from some of its subsystems. Using common sense, the principle may be expressed as 
follows: in any ampliative inference, use all available information, but make sure that no 
additional information (unsupported by the given evidence) is unwittingly added. Employing the 
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connection between information and uncertainty, this definition can be reformulated in terms of 
uncertainty: any conclusion resulting from ampliative inference should maximize the relevant 
uncertainty within the constraints representing the premises. This principle guarantees that we 
fully recognize our ignorance when we attempt to make inferences that are beyond the 
information contained in the given premises and, at the same time, that we utilize all this 
information. 

 
Figure 2.  An overview of principles of uncertainty:  1. principle of minimum uncertainty; 2. 
 principle of maximum uncertainty; 3. principle of requisite generalization; 4. principle of 
 uncertainty invariance. 

 
Principles of minimum and maximum uncertainty are fundamentally different from the other 
principles of uncertainty. While the former are applied within one particular uncertainty theory, 
the latter involve transitions from one theory to another (Figure 2). Principles of minimum and 
maximum uncertainty are well developed in classical, probability-based uncertainty theory, 
where they are called principles of minimum and maximum entropy [Christensen, 1980-81, 
Kapur, 1989].  
 
The principle of requisite generalization is based on the assumption that we work within GIT as 
a whole. According to this principle, we should not a priori commit to any particular uncertainty 
theory. Our choice should be determined by the nature of the problem we deal with. The chosen 
theory should be sufficiently general to allow us to capture fully our ignorance. Moreover, when 
the chosen theory becomes incapable of expressing uncertainty resulting from deficient 
information at some problem-solving stage, we should move to a more general theory that has 
the capability of expressing the given uncertainty (Figure 2). 
 
The principle of uncertainty invariance (also called the principle of information preservation) 
was introduced in GIT to facilitate meaningful transformations between various uncertainty 
theories. According to this principle, the amount of uncertainty (and the associated information) 
should be preserved in each such transformation. The primary use of this principle is to 
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approximate in a meaningful way a formalization of uncertainty in one theory by its 
formalization in another, less general theory (Figure 2).  
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