UMR Y. k 5 i Y. k 5 i Y. k 5 i Y. k 5 i L
Advanced Computational Intelligence
_ for Identification, Control and

» Optimization of Nonlinear Systems

i | -.'J‘.\ , . . > ; . ..'_J‘.\

J‘.\

= Ganesh Kumar Venayagamoorthy, PhD

J > Associate Professor of Electrical and Computer Engineering
& Director of Real-Time Power and Intelligent Systems Laboratory
University of Missouri-Rolla, USA

http.:.//www.umr.edu/~qganeshv
.3 www.ece.umr.edu/RTPIS
'. 1> gkumar@ieee.orq

e © Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April<1-5, 2007, Honolulu, USA™

UMR

Acknowledgment

Support from the National Science Foundation, USA,
CAREER Grant ECS # 0348221, University of Missouri
Research Board and University of Missouri-Rolla, USA is
gratefully acknowledged.

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Intelligence

Ability to comprehend, to understand and profit from experience, to

Interpret intelligence, having the capacity for thought and reason
(especially, to a higher degree).

Creativity, skill, consciousness, emotion and intuition.

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Computational Intelligence (1)

® Computational Intelligence (Cl) is the study of adaptive mechanisms
to enable or facilitate intelligent behavior (intelligence) in complex
and changing environments.

® These mechanisms include paradigms (Al) that exhibit an ability to
learn or adapt to new situations, to generalize, abstract, discover
and associate.

® Turing Test - 1950

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Computational Intelligence (2)

UMR

® Computational Intelligence (Cl) can be defined as the
computational models and tools of intelligence capable
of inputting raw numerical sensory data directly,
processing them by exploiting the representational
parallelism and pipelining the problem, generating
reliable & timely responses and withstanding high fault
folerance.

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April~1-5, 2007, Honolulu, USA

Neuro-Swarm

eural & Immune Systems

Networks

Neuro-Genetic _
Systems Evolutionary-Swarm

Systems

Evolutionary

Swarm
Intelligence

Neuro-Fuzzy
Systems

Computing
Fuzzy-GA
Systems

f

Fuzzy-PSO
Systems

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Neural Networks

® A neural network can be defined as a
massively parallel distributed processor
made up of simple processing units,
which has the natural propensity for
strong experiential knowledge and
making it available for use.

® The neural network resembles the brain
In two aspects —

® Knowledge is acquired by the network , o -
from its environment through a learning
process.

® Interneuron connection strengths, known
as synaptic weights, are used to store
acquired knowledge.

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Artificial Immune Systems

UMR

- ® Artificial Immune Systems (AlS) are biologically
Inspired models for immunization of engineering
systems.

® The pioneering task of AlS is to detect and
eliminate non-self materials, called antigens such
as virus or cancer cells.

® The AIS also plays a great role to maintain its
own system against dynamically changing
environment.

" ® The immune systems thus aim at providing a new
methodology suitable for dynamic problems
dealing with unknown/hostile environments.

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Evolutionary Computing

® Evolutionary Computing has as its
objective the model of natural
evolution, where the main concept is
survival of the fittest: the weak must
die, the elites move to the next level.

. ® In natural evolution, survival is
* achieved through reproduction.
Offspring, reproduced from two
parents, contain genetic material of
both parents — hopefully the best
characteristics of each parent.

® Those individuals that inherit the bad
characteristics are weak and lose the
battle to survive.

® Insome bird species, one hatchling ~ » . .
manages to get more food, gets ' '

stronger, and at the end kicks out all
its siblings from the nest to die.

° GAs, GP, EP, ES S B > 5 >

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Swarm Intelligence

Swarm intelligence originated from @& ¢

the study of colonies (ants, bees,
termites) or swarms of social
organisms — flock of birds, school
of fish.

Studies of the social behavior of
organisms (individuals) in swarms
prompted the design of very ,
efficient optimization and clustering ™ eHiagie™
algorithms. Foug

Sl is an innovative distributed

Intelligent paradigm for solving

optimization problems.

10
© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Fuzzy Systems

Traditional set theory requires elements to be either part of a set or
not. Similarly, binary-valued logic requires the values of parameters
to be either 0 or 1, with similar constraints on the outcome of an
Inferencing process.

Fuzzy sets and fuzzy logic allow what is referred to as approximate
reasoning.

With fuzzy sets, an element belongs to a set to a certain degree of
certainty.

Fuzzy logic allows reasoning with these uncertain facts to infer new
facts, with a degree of certainty associated with each fact.

In a sense, fuzzy sets and logic allow the modeling of common
sense.

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

11

Computational Intelligence

ﬁ Swarm-Neuro-Fuzzy

 e—|

Evolutionary-Swarm-Neuro Systems =

N p

Swarm Intelligence

Evolutionary-
Swarm-

Neuro-Fuzzy

Fuzzy Logic

>

Evolutionary
computing

Evolutionary-Neuro-Fuzzy

—
—l

@ Evolutionary-Swarm-Fuzzy Systems

_l_2
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

i i i i
- - - - -

Multi-Layer Feedforward Networks

. # # . .
o -l F o -l F o -l F o -l

-
-

F 4 F 4 F
- L w % - L w % - L w

—
—

T X; . Input neurons

-
-

y; . Hidden neurons
Z; - Output neurons

v; - Input hidden
layer weights

1 wj - Output hidden
layer weights
1 Input layer Hidden layer Output layer

= = = = =
2 2 2 2 z 13
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Feedback (Recurrent) Networks

/ Hidden Layer \

/ Input Layer \

Inputs

/

i

(Context Layer } /

/ Output Layer \

/

A

)

Output

Activation
Functions:

Input & Context
Layer — Linear

Hidden Layer —

Hyperbolic
Tangent

Output Layer —
Linear

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

14

Cellular Architectures

—» t— W C—P
“—>»r = — 4—P
t—»r t— —>

15

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

& ¥ ¥ ¥ ¥
20r i i i i i

« Learning Methods

.
- . - » - - -

' Learning Methods can be broadly classified into three basic types: supervised, unsupervised,
and reinforcement.

Supervised Learning:-

Vectors describing
state of the
environment

Environment Teacher

Desired
response

/
+
Learning Actual response /
system >

Error signal

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

+ Learning Methods

- - -

- - -

- Unsupervised Learning:- In contrast to supervised learning, the objective of unsupervised
learning is to discover patterns or features in the input data with no help from a teacher,
basically performing a clustering of input space.

Reinforcement Learning:- In this method, a teacher though available, does not present the

. expected answer but only indicates if the computed output is correct or incorrect. The
information provided helps the network in its learning process. A reward is given for a correct
answer computed and a penalty for a wrong answer.

Noise
Pl l Plant
Reinforcement, r Reinforcement Resp}onse
— ™ Learning Controller > Plant

T

Performance
Evaluation

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

‘.l ." 3 ‘.l ." 3 ‘.l ." 3 ‘.l ." 3 ‘.l

= = = = =
-~ Classification of Learning Algorithms - =
S NSNS AR B AR, N AN By A
-:—:-_._' L -:—:-_._' L -:—:-_._' L -:—:-_._' L -:—:-_._'
s &
v .
Supervised Learning vl
o (Error based)
Error Correction
Gradient descent 3
s &
Least Mean Backpropagation
Square propag
s 7 &
o - - L, - - L, - - L, - - L, - - L, = - 18

T © Ganesh Kumar \/'enayagamoorthy', IEEESyn:lposium Seties on COMputa'tionaI Intelligencé, April1 -5,'2007, Honolulu, USA™

n+1 P 2
f=y ijixi Errorzpz;(tp—fp)
: i—1 -

where £, and f are respectively the target and actual output for patterns p, and |
_ P is the total number of input-target vector pairs (patterns) in the training set.

Error

__» Weight

19

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Gradient Descent Learning Rule — Neuron

UMR

The weights are updated using:

W, (t+1) = w (t) + Aw. ()

P 2
with Aw (t) = n(_ﬁ_E) Error = Z(tp - 1))
OW, p=1
ok of
where —=-2(t —f)—x
oW, (t, = 1,) ou,, "P

where n is the learning rate and w;(t+1) is the new weights.

20

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

s 7 7. 2,
| Sl i i - 5

. Feedforward Neural Networks '_ ,
Feedforward —>
Operation

OUTPUT
. LAYER LAYER

HIDDEN
e LAYER

Backpropagation

> |
| B

™ © Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

21

FFENN/MLP Functional Block Diagram

|
|
Id‘l =]V
|
|
|
I
|

e wzn

wmz
- m
w

22

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

- FFNN Feedforward Operation

il - il il

Input vector xjwhere J =1 to n (number of inputs).

Input weight matrix W, where i = 1 to m (hidden neurons).

Step 1: Activation vector a;is given by
n

ai — Z WIJ XJ
j=1
a=W x
Decision vector d; is given by
d; =sig(a;)
1
where sig()=——+
9t 1+e V)
Step 2: Output vector f/,. IS given by (r is no. of

outputs) m
yh :ZVhidi , h€{1,2,3,r}

i=1

y=Vd

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April~1-5, 2007, Honolulu, USA

-

FFNN Backpropagation Operation
v The error function used to derive the
backpropagation training algorithm is based
on the principle of gradient descent and is
given as half the square of the Euclidean norm
of the ANN output error vector.

E()=E(e,) = E(CW.V, Y) E%\gjf

This is called the objective function for ANN

learning to be optimized by the optimization
method.

The square law results in more sensitivity to
larger errors than smaller errors. Thus,

-Large parameter adjustments for fast reduction
of large errors, and
- -Fine parameter adjustments for settling into
Desired error function minima.

24
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

-

Two types of supervised learning algorithms exist, based on when/how weights
, are updated:

« Stochastic/Delta/(online) learning, where the
weights are adjusted after each pattern
presentation. In this case the next input pattern
Is selected randomly from the training set, to
prevent any bias that may occur due to the
sequences in which patterns occur in the
training set.

« Batch/(offline) learning, where the weight changes
are accumulated and used to adjust weights only
after all training patterns have been presented.

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

25

FFNN Backpropagation_Operation |

UMR Step 1: The output error vector is given by x

e =vy-y .
_y B ~
Step 2: The decision error vector is given by™
ERVAl
gd _V gy
The activation error vector is given by ey
d d e =
=—d. —d. =d. (1-d.
gai dal Igdi dal I I(|)
o
gai:di(l_di)gdi E ..)
Step 3: The weights changes are given by :70 L

AV (k) = 7,&,(K)d" (k) +7,AV (k-1)
AW (k) = 7,8, (K)x" (K) + 7, Aw(k ~1)
where y, and y are learning and momentum gains respectively.

29
© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

FFNN Weight Updates

UMR

W,
Step 3: The weights updates are given by x, o = v d v"k
x + + ?
V(k+1) =V (k) + AV (k) e >l
W (k +1) =W (k) + AW (k) L Wi >
One set of weight modifications is called V21_\: .
an epoch, and many of these may be 8 Vool 2
required before the desired accuracy of | e
approximation is reached. 2m
vr‘l
LW : y e
—>Ws : > f o > rm
)
27

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

— 2 i r i

11— W
1 + a1 -f- d1 - v11 V1,d1
X - W, - . <>0.5
5 y
d2-1 v v12d2 o | e 4
i 10 5 0 10
) 4
Y = V,,Sig(W,,X+W,,) + v
y V“SIQ(WWX n 12 V,, € [0 025051 2],v,=0,W=[01]
sig(.) = 1+eV L ,
: azs
<> 0 L. <
os
-1 -+ -1
-2 = 4 ':
-10 -5 10
28

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

- 2 - r =i

W, € [0 13],w,=1,V=[10]

oy i
1 it W" +
a, _/" d, v, vy, d, 0.5+ -
X = Wy * "
+
o . .
d2-1 V,,d, - i i
- Vi2 -10 -5 0 5 10
X
A .
Y = vy Sig(wy x+wy,) + vy, Vo € £[0 0.5 1.5], v, =1, W=[01]
. 1 | |
sigl) = 7450 L s
—Q.5
e rnee ()
: —= 0.5
0 ; :
: 15
2
-10 -5 0 5 10
x
29

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Evolutionary Computing

- - - - - -

1. Evolution is the process of adaptation with the aim of improving
the survival capabillities through processes such as natural
selection, survival of the fittest, reproduction, mutation,
competition and symbiosis.

2. Evolution is an optimization process.

3. EC is a field of Cl which models the processes of natural
evolution.

30

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

1,! .t" 2 1,! .t" 2 1,! .t" 2 1,! .t" 2 1,!

- ~ ~ ~ -

o Evolutionary Computing = "
. p -".;,.«.‘:';."—.1: -".:,a.f." Hf -".:,a.f." .1: -"_;,«_‘:';."-I1: -
; F ..'.:?‘ g 4 ..'.:?‘ g 4 ..'.:?‘ ; r ..'.:; : r ..-.:;

Differential
Evolution
A\ 4
Evolutionary |
i Strategies
[" : - ™ ' e n ' e n ' - n ' - Y
o s - KL, s - KL, s - KL, s - KL, s - KL, = - 31

. © Ganesh Kumar \/enayagamoorth);, IEEESyn:lposium Seties on COMputa'tionaI Intelligencé, April1 -5,'2007, Honolulu, USA™

F F F F

~ Main Steps in Evolutionary Computation

L3 r - = - -

1. Encoding of solutions to the problem as a chromosome.
2. Fitness function — evaluation of individual strength.

3. Initialization of the initial populations.
4. Selection operators.

5. Reproduction operators.

32

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Encoding Process

—i . - . - . -

. Population of individuals — each individual is a candidate
solution.

. Characteristics of an individual are represented by a
chromosome, or genome.

. Characteristics of a chromosome represented in two classes —
genotypes and phenotypes.

. A genotype describes the genetic make up of an individual as
iInherited from its parents. Experience of parents stored in
genotypes.

. A phenotype is the expressed behavioral traits/physical
characteristics of an individual in a specific environment.

33

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Fithess Function

- - - - - - -

. Important part for EA to be successful.

. Fitness Is a scalar quantity.

Fitness function quantifies the quality of a potential solution, i.e
how close is the solution to the optimal solution.

. Selection, cross-over, mutation and elitism operators are

based on fithess function values.

. The fitness function should include all criteria to be optimized.

Penalty can be imposed on those individuals that violate
constraints within the fitness function, in the initialization,
reproduction and mutation operators.

34

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Selection Operators

- 2 - r =i

—i

1. Random selection — good or bad individuals have equal
chance.

2. Proportional Selection — chance of individuals selected is
proportional to their fitness. Roulette wheel selection is used.

(Probability of it individual = fitness of ith individual /sum of all
Individual fitness)

3. Tournament Selection — a group of k individuals are randomly
selected to take part in a tournament. The winner is selected.

4. Rank-Based Selection — Ranking is given either in decreasing
or increasing order based on the fithess values.

5. Elitism — Best individuals are copied into the next generation.

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

35

General Evolutionary Algorithm

- . i . i . i

1. Initialize a population of N individuals.

2. While no convergence:

« Evaluate the fitness of each individual in the population
Perform cross-over

e select 2 individuals

e produce offspring

Perform mutation

» select one individual

* mutate

Select the new generation

Evolve the next generation.

Convergence is reached when: max. generations is exceeded,
acceptable fitness is evolved, fithess does not change
significantly over past x generations.

36

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Evolutionary Computing versus Classical
Optimization

UMR

1. No-Free-Lunch theorem [Wolpert and Macready 1996] states
that cannot exist any algorithm for solving all problems that is
on average superior to any other algorithm.

2. Thus, the motivation for research into new optimization
especially EC.

3. Classical optimization algorithms are very successful for linear,
guadratic, strongly convex, unimodal problems.

4. EAs are more efficient for discontinuous, nondifferentiable,
mutlimodal and noisy problems.

5. COs use deterministic rules to move from one point to other in
the search space while ECs use probabilistic transition rules.

37

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Evolutionary Computing versus Classical
Optimization
. COs use sequential search while EAs use parallel search.

. COs use derivative information, using first order or second
order, of the search space to guide the path to the optimum.

. ECs use no derivative information. Only fitness values of
Individuals are used to guide the search.

38

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

= Islands of Population Based Algorithms =
3y RAR, T AR, T AR, T AR, Y

- - - - -
- g - g - g - g - g

— — = = Migration

-
n.'-:"
- : |
F

> Qrresencans > VISIta'[IOI’l E
i ' i P T ' i P T ' i P T ' P T ' WEPT - 39

. © Ganesh Kumar \/enayagamoorth);, IEEESyn:lposium Seties on COMputa'tionaI Intelligencé, April1 -5,'2007, Honolulu, USA™

Bus

Swarm Intelligence (SI) is the property of a system whereby
the collective behaviors of (unsophisticated) agents interacting
locally with their environment cause coherent functional global

patterns to emerge.

40
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

F F F F

Basic Principles of Swarm Intelligence
(Mark Millonas, Santa Fe Institute)

’ Proximity principle: the population should be able to carry out ;
simple space and time computations.

~ . * Quality principle: the population should be able to respond to &
guality factors in the environment.

« Diversity principle: the population should not commit its activities ;
along excessively narrow channels.

-« Stability principle: the population should not change its mode of >
! behavior every time the environment changes.

« Adaptability principle: the population must be able to change
behavior mode when it's worth the computational price.

41

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

School of Fish/ Flock of Birds

- - - -

“... and the thousands off fishes moved as a
huge beast, piercing the water. They appeared
united, inexorably bound to a common fate. How
comes this unity?” — Anonymous, 17t century

The motion of a flock of birds is
one of nature’s delights.

42
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Particle Swarm Optimization (PSO)

i

A concept applicable to optimizing nonlinear functions
Has roots in artificial life and evolutionary computation
Developed by Kennedy and Eberhart (1995)

o Key points -

o Simple in concept

e Easy to implement

« Computationally efficient

o Effective on a variety of problems

43

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

44

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Particle Swarm Optimization
The system initially has a population of random solutions called

particles

Each particle has random velocity and memory that keeps track
of previous best position and corresponding fithess

The previous best value of the particle position is called the ‘p, .

It has another value called ‘g,./, which is the best value of all
the ‘pbest’ positions in the swarm

Basic concept of PSO lies in accelerating each particle towards
its p,.; and the g, locations at each time step

In local PSO, the ‘g,. IS changed to ‘I, where ‘I, IS the best
value of all the particles in local neighborhood.

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

45

PSO _EqUations_

il - il il il

Y Xk+l

\V/ t (G best_xk)

mo

S (Pbestk_xk)

4

Xk rvV.

ini

X

The velocity of the particles is given as follows

V, =wxV, +¢ xrand; x (B, .; — X,4) + C, xrand, x(G, ;s — Xiy)

estid

The position vector of the particles is changed as follows
Xig = Xig + Vg

46

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April~1-5, 2007, Honolulu, USA

Differential Evolution

- - - - - - -

UMR

1. Initialize a population of N individuals.

2. In every generation, for each individual select
3 distinct individuals randomly from the
remaining population.

Oy j= P4,j+}/><(P2,j—P3,j)

Y

3. Compute a random number to determine
whether to mutate or not.

O1j= Py, j

4. For each parent and its offspring, the individual
with the greater fithess is passed on to the next
generation.

5. Test for convergence. If all the individuals have not converged the
procedure is repeated from (2).

47
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Differential Evolution

- - - - - - -

UMR

1. Initialize a population of N individuals.

2. In every generation, for each individual select
3 distinct individuals randomly from the
remaining population.

Oy j= P4,j+}/><(P2,j—P3,j)

Y

3. Compute a random number to determine
whether to mutate or not.

O1j= Py, j

4. For each parent and its offspring, the individual
with the greater fithess is passed on to the next
generation.

5. Test for convergence. If all the individuals have not converged the
procedure is repeated from (2).

48
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Fuzzy System

Non-Fuzzy Non-Fuzzy
Inputs Outputs

Fuzzy Logic Controller

Defuzzification
Process

Fuzzification
Process

49
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Computing Degree of I\/IembershiQ

s

¥ e == ——

C D)‘Y E .
point 1 point 2

System Input Range Degree of Membership

A 0

B (X — point 1) x slope 1

C max

D (point 2 - X) x slope 2

E 0

50
© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Fuzzy Rule Based System

UMR

. Example
— Ifthere is heavy rain and strong winds then there
must be severe flood warning.
— Fuzzy sets = {heavy, strong, severe}
— Fuzzy variables = {rain, winds, flood}

e If the conclusion C to be drawn from a rule
‘ base R is the conjunction of all the individual
consequents C. of each rule, then
C=C,nC, "C53N... "C,
where

pc(y) = min (uea(Y), BealY), Bes(Y), -5 Men(Y)) |

51
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

UMR

Inference Engine (Firing)

_+ The task of the inference ehgine IS to'carry out -

the inferencing process which is to map the
fuzzified inputs to the rule base, and to
produce a fuzzified output for each rule.

-+ Fuzzy inference Is referred to as approximate

reasoning (evaluating linguistic descriptions).

~ « Rules that are not activated have a zero firing

strength.

52
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Defuzzification

. This is the reverse process to fuzzification.

. The fuzzy output of the inference engine (fuzzy rules) is converted into
scalar, or non-fuzzy value.

. Defuzzification resolves conflicts between competing actions such as
‘output to be set to positive medium’ and ‘output to be set to
positive large’ (example illustrates this). In this case, defuzzification
employs compromising techniques to resolve both the vagueness and
conflict issues.

. Several methods exist for finding an approximate scalar value, namely:

Max-min method

Averaging method
Root-sum-square method
Clipped center of gravity method

53

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Defuzzification

| . Clipped center of gravity method

— Each membership is clipped at the corresponding rule firing
strengths. The centroid of the composite area is calculated
. and its x coordinate is the output of the controller.

PM PL

0.45

191 223 255

54

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

F F F F

Training of a Feedforward Neural
Network

> INPUT LAYER AW HIDDEN LAYER AV OUTPUT LAYER :
L W 7N -
; X % 11 \\: al / dl V.,
/
’ W1,2 L
- Desired ;
4 1 » W2’1 — a2 d2 Output :
p / Vo
/C Yd -
P W,] Y- >
E S Z)
4 Error
- W3,1 T a3 / d3 V3 1 ey - (3
_ /(: ——>
b 1 / Wio + L]
o (bias) \ %
War C a4 / d4 V.
/
W, | e . »
L ai €di b
. TRAINING ALGORITHM

. 55
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

PSO for Neural Network Training

UMR

For training a neural network using the PSO:

» The fitness value of each particle of the swarm is the value of the
error evaluated at the current position of the particle

» The position vector of the particle corresponds to the weight matrix
of the neural network.

56

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

i i i i i

e Problem 1:
1= Target Function for Neural Network Training *

| 4 | 4
L3 4 i Target Function y:2x2+1 i e
3 T T T]
| |
2.8+ -
¥ ¥
- 2.6 - d
2.4+ e
| 4 | 4
2.2+ e
- -
: 3 :
1 5 2 7 1
(@)
1.8+ -
¥ ¥
i i
1.6+ -
1.4+ s
| 4 | 4
- -
1.2+ e
| |
1 | | | | L | | | |
: -1 -0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1
, Input r

S i
’ ! ! ! ’ 57
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

F F F F

Training MSE of the' PSO Parﬁcles —
Y = 2x%+1

0.
0. i
0. 1
Maxepochs=100 Particles=25 MaxV=2 MaxX=100LM{:# 1
9 T T T T T T T (l’)
zO e —
8r! g
\\H Particle 1

70 0.2 BP i

||
\

6 ‘ﬁi Particle 2 01
I

—> PSO (ghest)

0 50 - 100 150 200 250 300
Epochs

MSE of individual particles
(&)

40 50 60 70 80 90 100
Epochs 58
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Magnified Test Results for Neural Networks
with Fixed Weights Trained
with BP and PSO - Bias 1

5 Blue :BP |
: 1.035 Black : Target

. 1030 Red : PSO |

1.025(]

2 1.02| *
-

. £1.015 §
-0

© 101 .

1.005(]

1t |

0.995(]

¥ 0_99‘ | | l l l l |

-0.1 -0.05 0 0.05 0.1 0.15
|nputx

59

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Comparison of Number of Computations in Training a

Neural Network 2 x4 x 1 (Bias 1)

Error=0.001 PSO BP PSO BP

Patterns (input x) -1: 0.1:1 -1: 0.01:1

Iterations 194 9836 116 962

Forward path (additions+ multiplications) 2546250 4750788 14572500 | 4447326

Backward path (additions+ multiplications) 523800 14045808 | 835200 13148616

Total (Forward + Backward) 3070050 18796596 15407700 | 17595942

Ratio of computations 6.1226 1.1420
With bias 2

Error=0.001 PSO BP

Patterns (input x) -1:0.1: 1

Iterations 194(83 9836(307

Forward path (additions+ multiplications) 348600 148281

Backward path (additions+ multiplications) 71712 438396

Total (Forward + Backward) 420312 586677

Ratio of computations 1.3958

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

60

500 : : : : : : : : :
500 -
400 b A -
200 b

200

-400

O s00 1000 :’..15::10 2000 .,-'.25;31:1..".31:1::"3 5;5:zn:|'.. 4000 4500 5000

Missing data to be predicted

61
© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

UMR

e An Elman RNN
IS chosen as the

Output layer
(5)

predictor

1

 Novel training

Hidden _Layer 2

(20)

Hidden Layer 1

(40)

SN

Context
(40)

algorithm

Input layer
(100)

X(t) x(t+99) -

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

62

Hybrid PSO+EA

¢ Hybrid = Co-operative + Competitive

— (PSO + EA)
“« Apply evolutionary operators to PSO .
X — Selection, crossover and mutation Z

* Benefits:

— Focus on good region

— Increase the diversity of the population

— Save computation

63

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April~1-5, 2007, Honolulu, USA

Hybrid PSO+EA

Generation N Old Population
Rank
> Winners Losers
Elites) Discard half ”
Fitﬂ.eSS PSO R EA
ranking Mutation
l Enhanced elites Offspring

Generation N+1 New Population

64

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

800

600 + —

400 + —
A

200 |- : A .
. J’I

0 i . : .‘ l‘ —
AN T -

200 L '.. :' ..' ..' ..0. _

400 |- N -

-600 ! ! .'. ! . ! .0. ! .0. ! .o\'. ! !

0 500 1000 0.1500: 2000 > 250Q* 3000 ,.3500 4000 4500 5000

Predicted missing data

65

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April~1-5, 2007, Honolulu, USA

MSE (100) - E,

MSE (80) E,

408

346

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April<1-5, 2007, Honolulu, USA™

Evolvable Hardware

There are many methods to design combinational circuits, generally
K-maps, Quine-McCluskey methods are used

The problem with the human designs is that they become
cumbersome and problematic with the complexity of the function

Design of circuits based on the principles of Darwinian evolution is
known as Evolvable Hardware (EHW)

To design conventional hardware, it is necessary to know all the
specifications of the hardware functions in advance. In contrast to

this, EHW can configure itself without such specifications known in

advance

One of the goals of EHW is to evolve complex designs, not
achievable with the traditional design methods

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

67

“Desired” Circult Hardware Evolution

- . - 4 - F -F

Evaluate Evaluate evolved| Download evolved

fitness rafis £ ‘desired” circuit Reconfigurable

Hardware
Platform (FPGA)

A Swarm
of circuits

compare with
“desired” circuit.

Re-generate
circuits
using PSO

The “desired” circuit refers to the circuit required to map 100 %
exactly the outputs for corresponding inputs, typically given by a truth
table for a digital function, with the least number of gates.

F F F F F

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

68

3 Input
Truth Tables for the examples taken

HD1 NGA MGA PSO
” v - = F=Z(X®Y) |F=z(X+Y) | F=(x+V)z | F=xz®
+Y (X ©2) ® (XY) ® XY Y(X +2)
0 0 0 0 5 gates 4 gates 4 gates 4 gates
0 0 1 0 2AND,10R, | 2AND,10R, | 2 AND,1 OR, 2 AND,1 OR,
2 XOR 1 XOR 1 XOR, 1 XOR,
0 1 0 0
0 1 1 1
1 0 0 0 X B XZ R
z ./ ﬁ)
1 0 1 1 y F=XZ®Y(X +2)
1 1 0 1 jv(x +2Z)
X
1 1 1 0 z —> (X +2)

09

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Collective Robotic Search

 Unmanned vehicles/mobile robots are used to
explore environments inhospitable to humans such
as remote areas, military surveillance applications,
seismic activity detection, planetary exploration, toxic
area exploration, etc.

« A large number of mobile robots are used for these
applications.

70

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

s # s # s # s

- -

o Multiple Targets

UMR -

J Graphical representation of a multiple target case — each robotis +*
equipped with sensors to measure desired intensities. of

1
Group Group 2 |

Robots

Group 4

Targets

| Sl | Sl | Sl | Sl | Sl
e © Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April<1-5, 2007, Honolulu, USA™

Flow chart for Optimal
PSO

Optimization is done in an
offline environment

2-level hierarchy

Inner Swarm:

— Specific application

— Fitness: intensity,
Euclidean distance, etc

Outer Swarm:

— Optimizes parameters of
the application

— Fitness: number of
iterations of inner swarm

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computation

OUTER PSO

Initialize PSO parameters for the outer swarm
(Wout, Clout, C20u)

Initialize the values of wi,, cli, & c2;, to be
used in the inner swarm

INNER SWARM FOR TARGET
SEARCHING

Uses the values wi,, ¢l & €2, as
passed into it

The target search application program
that uses PSO

Fitness: lowest number of iterations

Chooses the values of wi,, ¢l & ¢2i, that !
corresponds to the particle with the least I
number of iterations

Best values of wi,, cli, &
C2in

TARGET SEARCHING

Comparison of PSO & Optimal PSO

Case Parameter Values |# of Iterations
Single Target W:_O'G
(Unoptimized) _
C,=2
_ w =0.45
Single Target
(Op%imized% €, =9-60 595
c, =1.50
. w=0.6
Multlpl_e Targets ¢,=0.5 137 | 144 | 138 | 139
(Unoptimized) —
C,=2
. w =0.55
Multiple Targets | . _ g5 123|128 112 | 124
(Optimized) _
c,=2.23

73

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Comparison PSO, DE and DEPSO

Case Evaluations Convergence
PSO 11796 100% (84%)
DE 3624 100% (94%)
DEPSO 5723 100% (100%)

74

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Fuzzy Logic Control

- - - -

Non-Fuzzy Non-Fuzzy
Inputs Outputs

Fuzzy Logic Controller

Defuzzification
Process

Fuzzification

Inference Engine
Process

}

Knowledge Base
(Rules)

75
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

The Fuzzy'System

UMR

e Equations:
— Pi= (X +4X;, Y, +4Y;)
o AX.=f(l, Gdx)
o AY,=1(l, Gdy)
Where,
e Gdx=L X - Pxand Gdy=L, ..y — Py

 Px and Py are the X-Y coordinates of the sensors
current position

e L. xandL,.yarethe X-Y coordinates of the L., of
the swarm.

76

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Opti'mized FuZzy System

i . i i

~» PSO was used to optimize the Fuzzy Parameters
— Membership Functions
— Coarse and Fine Rule Set

 |[F (a set of conditions is satisfied), then (a set
of consequences can be inferred).

77

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

200 L % o
@
* *
* * *
. * g * + *
+ . * *
* % ¥ *
* *
* *
" . * ¥ ox * *
-k * N * *
N 4 5 ° 6
+ *
* *
+ @ .
|. *
B! ® *y P * *
* * *
. *
* * *
*
* ek * - * *
*
* | J
0 100 200 300
L9 >X

78
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

UMR

Results for PSO Based Navigation

w C, c, | #of lterations | Time (sec) | Convergence
2 2 1181.58 6.35 0%
0.8 0.5 2 1106.09 5.88 0%
2 0.5 985.39 4.98 26%
05| 05 924.10 3.99 93%
2 2 910.60 4.90 94%
0.6 0.5 2 859.40 4.79 99%
2 0.5 889.36 5.07 32%
05| 05 841.85 5.24 8%

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

79

UMR

Results for the Fuzzy Based Navigation

(100% Convergence)

Simulation | Membership | Coarse Fine Rule | Iterations | Time
case study | Function Rule Set set (sec)
1 Original Original Original 355.80 | 349.97
(heuristics) | (heuristics) | (heuristics)
2 Original Original 308.41 | 328.24
(heuristics) | (heuristics)
3 Original Original 356.96 | 356.18
(heuristics) (heuristics)
4 Original Original 307.44 | 325.65
(heuristics) | (heuristics)
5 PSO PSO 306.15 | 326.78

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

80

} Control & Applications

S Ganesh Kumar Venayagamoorthy, PhD

.73 > Associate Professor of Electrical and Computer Engineering
' & Director of Real-Time Power and Intelligent Systems Laboratory
University of Missouri-Rolla, USA

http.:.//www.umr.edu/~qganeshv
.3 www.ece.umr.edu/RTPIS
; A2 gkumar@ieee.orq

81

e © Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April<1-5, 2007, Honolulu, USA™

o
R
: Plant or : >
Environment
Observables X(t) Control Variables
B (Actions) u(t)
\ Control system

\ 4

A 4

* t may be discrete (0O, 1, 2, ...) or continuous
 “Decisions” may involve multiple time scales

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

What is Intelligent Control?

Intelligent Control is a form of control is defined
. as the abllity of a system to comprehend,
reason, and |learn about

* processes
" e disturbances and
- e operating conditions.

83

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

(R ‘What are the Goals of
we Intelligent Control?

- The fundamental goals of intelligent Control may be
described as follows:

o Full utilization of knowledge of a system and/or feedback
from a system to provide reliable control in accordance with
some preassigned performance criterion

-+ Use of the knowledge to control the system in an intelligent
manner, as a human expert may function in light of the same
knowledge

~+ Improved ability to control the system over time through the
accumulation of experiential knowledge (i.e., learning from
expenence)

— R Ll A AL A e T e B R B R il A i

UMR

Neural Network Controller
Design Approaches

Neural Network Controller designs fall mostly into

~~ the following five categories:

~* Supervised Control

e Direct Inverse Control

_ + Neural Adaptive Control
~* Backpropagation Through Time (BPTT)

o Adaptive Critic Designs (ACDs)

85

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

U | Nonlinear | Output
Plant

>

Neural Network |
Inverse Controller

N\

g Desired

Output | Naural Network ControJ Nonlinear |Qutput

| Inverse Controllef A Plant
" u

86

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Neural Direct Adaptive Control

, Desired output
Backpropagation Error
:)3
Algorithm \C
3 y N +
Adjust
weights
Setpoint ¥ Outnut
" Nonlinear neural Control .| Nonlinear :p
Jnetwork controlleg Plant

- System state

87

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

* Nonlinear Plant Outpul] _f Desired Response
Predictor
k\
* Neurocontroller — Control * B
A Ao_ljust Er@ Error i
Adjust . weights |
weights *, |
' I
I

. Nonlinear Differential
\--——-- Plant Model ~ q--=-===-==-==-—=----
¥4

(Neural Network Identifier)

88

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Backpropagated Through Time
(BPTT) Based Neurocontrol

UMR

Ry(T)
Neurocontroller Neurocontroller Neurocontroller L e_('_rl
Model Model Model
X0 —
t=k t=k+1 t=k+h-1 t=k+h=T

89
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Power Grid

O Loads . — T ransmission Lines

90
© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

UMR

A CONTINUALLY ONLINE TRAINED
NEUROCONTROLLER FOR EXCITATION AND
TURBINE CONTROL OF A TURBOGENERATOR

IEEE Transactions on Energy Conversion,
vol. 16, no.3, September 2001, pp. 261-2609.

91

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Governo

3
S1 29

1
AAI:)ref

Infinite
Bus

A®

[AVR

AN
AAV, «—

A® +—

Neuro-
Identifier

Neuro- [*

Controller

Y

AAV

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

92

Conventional Controllers

-

-

Automatic voltage regulator and exciter combination

AVR Exciter
A
— N N
Vref¢ YV, Vfdm
V 1) N Kay(@+sT,,)A+sT 5) %‘ ma : 1 —>K Vig
— — - TreT.
—> 1+3TV5 —»@—» @+ sTV3) @+ sTV 4) Vmi - 1+sTe
Exciter
Input Filter PID Compensation S
and limits €
Saturation

Micro-turbine and governor combination

Micro-turbine

Governor — A —
[—H Pt entrained
+ saturation servo motor steam reheater
Ao KgdrsT) | AP - @_>[1 1 o] GHSFT)
1+ST92 1+sTg 2 1+sTg4 W

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April~1-5, 2007, Honolulu, USA

93

Adaptive Neurocontroller

AY()=[A0(t), AV,(1)]

TDL |
[Ao(t), AV (1)] Desired
Ve’ Pref D R
Turbogenerator » Nesponse
B Predictor
N A N
A TDL |, M l X(t+1) =[AV|(t+1),
\ A(t
‘ Neuro- ® AV Ao/S(t+1)]
\ > AP f(t) A A Error g
) Cont\mller re C - [Aot+), Ay (t+1)] Q EH
\‘ | t H
»| Neuro- i
v K :
o1 DL > S | dentifier 5
“\‘ J I‘ __ E
Lo Error Jea-oeooaoo-.
A
94

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

UMR

ANN Identifier/ModeI

Plant Inputs Vi Ao, AS
P P | prant Plant outputs Vt A
1 Uf AV
Time delay t Tln?ienglelay ,
line A Aw
AN A N
A +
AP Neural Network AV’[' @, A5'<'Z>
> Model _
AU, ANN outputs

update

f Weights 1

Training
Algorithm

errors

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

95

"~ ANN Identifier/Model

Series-parallel Nonlinear Auto Regressive Moving Average (NARMA)
model

y(), y(t=21), ..., y(t—-n+1),

y(t+1): f_ u(t),U(t—l),---,U(t_m+1)_

The NARMA model has been chosen in preference to other system
identification models because online learning is desired to identify the
dynamics of the power systems (as shown in the following slides).

96

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April~1-5, 2007, Honolulu, USA

UMR

Aw(t-1)
Aa(t-2)
Aa(t-3)
AV (t-1)
AV (t-2)
AV (t-3)
Apref (t' 1)
AP ¢ (t-2)
AP (t-3)
AV (t-1)
AV (t-2)
AV (t-3)

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

97

Training Signals

- . - 4 - F -F

Power deviations at inputs to the turbine and the ANN
a
o 01— T
c 0.08 : I —
S 0.06 g |
©) - 1
s 0.04 T .14
© u 1M M N
5 0.02 - M
= L
S 0
E] L
> 002t St Jr : :
Q. '004 - L] Ll - & f
0 L |
£ -0.06f" i ! i
= i 1
S -0.08 -4 _ |
-0.1 -
0 5 10 15
Time Iin seconds =

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Plant and ANN Outputs

Speed deviations at outputs of the PLANT and the ANN

0.15 | [ANN
[\ — PLANT

o
|_\
i

.......

Speed deviation in rad/s
o

_0.05
'Ol ... - . — o -
First op_eratlng Second operating Th_|rd opera_tlng
018 point . point (untrained) . point (untrained)
15 20 25 30 :

Time in seconds
—vmmmrmmuwvmmmmwmumwmgmmarcbﬂ—

Plant and ANN Outputs

Voltage deviations at outputs of the PLANT and the ANN

0.035
2 0.03f

. Third operating
p0|nt(untra|ned) -

0.025[
0.02 [~

0.015]~

0.01F

0.005

0

Terminal voltage deviation in

Second operating
. paoint (untrained) ;
-0.015 20 25 30
Time in seconds

-0.009\{"

OO

- Pre-training of the Neurocontroller

- - - -

® Inputs to the Neurocontroller
® Delayed values of Terminal voltage deviation AV,
® Delayed values of Speed deviation Aw
® OQOutputs of the Neurocontroller
® Deviation in Field voltage AV,
® Deviation in Turbine Power 4P, ¢

® Neuroidentifier weights

o F'Xed Vi) +AVigq(®) g D|Aw(K) Desired
. P Turbogenerator p| Response
® Backpropagation of Prer(K)*APrer() AV,(K)| Predictor
A b AV i4(K) VG il
errors at H T e AP A(K) TDL X(k+1) [AAYES:;])
(0}
L3 Controller c ® I—Ti
Y Au(k) E !
\ —»{ Neuro- A A !
® Desired Response Predictor '« TDL 3G tdentifier LAt haVtea]
RGO - [:
J AU(K)

101
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

| Post-control Trainihg

- - -

i

® Online training continues

' @ Three procedures are carried out every sampling period:
® Training the neuroidentifier
® Training the neurocontroller
® Controlling the turbogenerator

' ® First Procedure: Training the Neuroidentifier

- —> D [[An(K), AV(K)]

e | Turbogenerator

B
Au(k -
Controller| . P s @
[ToL >IC Neuro- |E
3 lgéntifier|
[A0(K).AAV(K)]

, 7

102

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

- Post-control Training

-

® Second Procedure: Training the Neurocontroller

TDL [«

Aw(k)| Desired
Vfield' Pref —» Turbogenerator D ®) Response
B AV(K)| Predictor

A ‘\ M A N
- TDL X(k+1) =[A\//\t(k+l),
Neuro- |AUCK)} AVgigy4(k) Croy- Aco(k+)]
Controller APyer(K) C H:

E 1
— I
Neuro- | 1Am(k+1), A<\/t(k+1)] !

‘\ K > G .

: —>

g denifr | T
oA Error)< ------4

® Third Procedure: Controlling the turbogenerator

® New control signals Au are calculated using the updated weights
from the second procedure and are applied at time (k+1) to the
turbogenerator at B.

103

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

Simulation Results:
Three Phase Short Circuit at the Infinite Bus

e The short circuit testis carried outat: Z=0.025+j0.6 atP=1pu & Q =0.62 pu

1.35 85

1.3 I[\\ 80 bt /

1.25 [\ ‘. f \ \ A

| g S
g 12 : YA
: . o Voo
% i \ /\/ M/——‘—\/ﬂ-‘—_s-———-‘-—-‘-————-—-——— 8 70 : ; “‘ : /\ 7\ VAN
I : THEHE A vy
S 2 I
> 11 > 65 I v V
© <
= 1.05 S
% : E 60 v,
o1
55 —— conventional controller
0.95 —— conventional controller | | | == neurocontroller
------ neurocontroller
0.9 50 V
O'85’0 1 2 3 4 5 6 7 8 450 1 2 3 4 5 6 7 8
Time in seconds Time in seconds
104

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April*1-5, 2007, Honolulu, USA

. - = . - = . - = .
- 2 . - 2 . - 2 . -

,_ Adaptive Critic Designs and
~ Applications in Power Systems

-

37 i B S 37 S 37 i B S 37
"o Ganesh Kumar Venayagamoorthy, PhD
J_ > Associate Professor of Electrical and Computer Engineering
& Director of Real-Time Power and Intelligent Systems Laboratory

o University of Missouri-Rolla, USA

| http.//www.umr.edu/~ganeshv
o www.ece.umr.edu/RTPIS
> gkumar@ieee.orqg

)))) ’ 105
e © Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April<1-5, 2007, Honolulu, USA™

Adaptive Critic’s Based
I_!euroco_ntrol

"« The Adaptive critic designs have the potential of
replicating critical aspects of human intelligence:
-~ - ability to cope with a large nhumber of variables in
parallel, in real time, in a noisy nonlinear non-
Stationary environment.

.+« The ACDs show a family of promising methods to solve
4+ optimal control problems.

 The origins of ACDs are ideas synthesized from dynamic
programming, reinforcement learning and backpropagation.

o -

3 3 3 3 ! 106
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

What is Reinforcement Learning? &),

 Learning from interaction — theories of learning
and intelligence.
e Learning is an active process.

o (Goal-oriented learning than other approaches
of ML.

. *» Learning about, from, and while interacting with
| an external environment

. » Learning what to do—how to map situations to
actions—so as to maximize a numerical reward
signal

107
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

F F F F

Reinforcement Learhing

: 1« Reinforcement learning is defined by Barto as follows:

If an action taken by a learning system is followed by a satisfactory
state of affairs, then the tendency of the system to produce that
particular action is strengthen or reinforced. Otherwise, the tendency
of the system to produce that action is weaken. -

Reinforcement Learning is a computational approach to learning
whereby an agent tries to maximize the total amount of reward it
receives when interacting with a complex, uncertain environment.

« There are two types of reinforcement learning: non-associative and
associative.

e The simplest and most frequently used reinforcement learning
methods is the Q — learning (Watkins).

L. Rei_nforcement learning control system may be used where the correct
o actions are not known.

: : - - - 108
© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Dynamlc Programmlng

The baS|c concept of all forms of dynamlc
programming can be summarized as follows:

Model of Utility
Reality (F) Function (U)

.+ _ | Dynamic Programming W a8

4 0. M Secondary Utility (J) P>

109

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

Dynamlc Programmmg

Bellman S equaﬂon Of dynamlC programmlng

M8

W)= X v KU(t+k)

s

Approximate dynamic programming is obtained using
a neural network called ‘the Critic network’ to

approximate the J - function.

W W W W W W

110

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

ACDs as Supervised and ~ (&&¥
Reinforcement Learning .
g, A Types of primary reinforcement: 5
"- e 1) EXxplicit targets for system outputs are provided at
5 Rl every step.
A« 2) Explicit differentiable cost as a function of system
. s variables is provided at every step.
~ "« 3) Agraded cost is provided at each step but explicit
y~ relationship with system states is not given.

. 4) Ungraded reinforcement is provided when appropriate,
A e.g. binary outcome at the end of a game.

- ACDs are supervised learning systems in the cases of (1) & (2).
-~ They are reinforcement learning systems in the cases of (3) & (4).
" Critic may be thought of as a transformer of cases (3) & (4)

. % tocase (2).
- T T T - v - v 111
e © Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligencé, April1-5, 2007, Honolulu, USA™

e e s s

-

A famlly of adaptlve CI‘ItIC deS|gns was proposed by
Werbos in 1977 as a new optimization technigue
combining concepts of reinforcement learning and
approximate dynamic programming.

The adaptive critic method determines optimal control
laws for a system by successively adapting two neural
networks, namely an Action neural network (which
dispenses control signals) and a Critic neural network
(which learns the desired performance index for some
function associated with the performance index).

These two neural networks approximate the Hamilton-
Jacobi-Bellman equation associated with optimal control

theory.

.
| | | |

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligencé, April1-5, 2007, Honolulu, USA™

Adaptlve Crltlc DeS|gns ks

112

Summ ary: The go als of ¢
= Intelligent Control with ACDs | -

-

« Adaptive Critic designs, which are rarely studied but
very powerful design techniques that give brain-like
Intelligence to controllers

_ - MIMO system
2 - Nonlinear system
P - Model uncertainties

- Random disturbance

- Learns over time

_ - Adaptive

s - Robustness (Hamilton-Jacobi-Bellman equation,

| basic equation of stochastic optimal control)

113

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

r

f A o
= .:",-_:

¥ Adaptive Critic Designs =

A : ' A : ' A : ' A : '
L-r L-r L-r L-r L-r
e L .

Lod ‘:U ,,’-1;_-_
To actually build an adaptive critic control
system, the following will have to be decided:

b f b

» -

Exactly what the Critic network Is supposed to
approximate, and how it will adapted, o

{

How the Action network will be adapted in response to %
the information coming out of the Critic network.

| | | g | | |
- - > «_JN - - - -
- - * C - _ - -
ool
¥ 1_13 ¥ 1_13 ¥ -::LP' ¥ 1_13 ¥ 1_13 ¥
i i i i i ¢ 4
A A s A A T |
& & = & &
- - & e . -] 114

© Ganesh Kumar \/enayagamoorth);, IEEESynlvposium Seties on Comr)uta'tional Intelligencé, Apf#'*l-5,'2007, Honolulu, USAm

ANN Controljler based on Adabtive
Critic Designs - HDP

| A Y(t) Yref > PLANT > Y(t)
TDL >
:)'
ACTION
Neural o A(f) CNF;LI;F > J(1)
Network Network «-=--=-1
TDL A i
| AY ()| LTDL 03O
a4 ! oAy (t)
1
oA | | MoDEL | !
> 1
5 [AG-1), A®2), At-3)]| Neural | !
e m e e m e m e m—— - 1 Network [~
[AY(t-1), AY(t-2), A Y(t-3)] 115

Critic Neural Network

J(Y(t>)=éykuw(t+k»

AY(t+1) —> J(4Y(t+1)) U4 Y(D)
CRITIC
A,\\((t) » Neural Network l
AY(t-1) —»
Target =
yI(AY(t+1)) + U4 (1)
A ,,V
A,j((t) ' J(4Y(1))

CRITIC
AX (t-1) Neural Network + @

AY (t-2) —> |
e 116

Y gailicoli r\urriair VG‘IIGyayC”IIUUI llly, [y . = \)yIII'JUOIUIII OCIITO VI wurTipuwauviiai HIlUlIIyUIIlJU, AN 1Y, £VUVI, 1TVIIVIUIU, UOM

DHP Critic Network Adaptation

J" Yref—’ R
TDL PLANT > Y(1)
ou (t
ACTION Je-f- ===~ ---- —aA((t))
" i Neural = A(t)
Network /|-~) A (t+1)
I | L - < .
A JMODEL [T GRITIC
: ! > Neural n o
: TDL[—> 4Y(t) — Neural > A(t+1)
2 Network | — A
. : 8J (t+1)
: TDL}>4v (t-1)— Network = T

Y | 0AY (t+1)
YO
P\ 4L fmrmm = — . . ._»__2 .,

8U (t) Memm m mmm m mmm e h mmm o e R mEm h mmm R mEm N Emm m EEm h mmm m o h mmm m mm w - :
IO R A ity) :
)
' MODEL ‘ A;(t) . Ec,(H
Neural I . CRITIC
Network TPL — 4y (-1~ Neural > A(t+1)
TDLF=>4Y(t-2) ~" N/etwork :M
g oA4Y (t+1)

Y gailicoli r\urriair VUIIGyayalIIUUI llly, [y . = \)yIII’JU\)IuIII OCIITO VI wurTipuwauviiai lIIlGlIIyUIIbU, AN 1Y, £VUVI, 1TVIIVIUIU, UOM

Action Network Adaptation

o J(t) _ou(t) & J(t+1) _
oAt) oA(t) T T aAlt)

Yief ———» “
ﬁ ref J| PLANT Y (1)

TDL

< au(t)

AY (1) e oY . OA(t)
-———-vIAC,fION —> A(t) i

Y @' «— 7
Y I
TDL| a(t+1), e
! +
H PO L Neuro- (CTTTTTTTT oo 1 8J(t+1)
Identifier > CRITIC #’k(t 1) =
> n SAY(t+1)
AY((t+1),(1),(t-1)
118

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

[

s ' # s ' # s ' # s

Critic Network’s Training Cycle - (§ o5

- - # - - - - # - - - - # - - -

The following operations are repeated N times:

. Initialize t = 0 and 4Y(0)
Compute output of the critic network at time t, J(t) = f,(4Y(1), WC)
. Compute output of the action network at time t,
A(t) = Fo(AY(), W)
. Compute output of the model network at time t+17,
AY(t+1) =1,(AY(t),At), W,)
. Compute the output of the critic network at time t+17,
J(t+1) =1 (AY(t+1), W)
. Compute the critic network error at time {,
Ecq(t) = J(AY() -)(AY(t+1) - U(1))
U(t) = [4 AV(t) + 4 AV(t-1)+16 AV(t-2)]°+ [0.4 A(t)+ 0.4 A(t-1)
+0.16A4(t-2)] 2
. Update the critic network’s weights using the backpropagation
algorithm
. Repeat steps 2 to 7.

> Taricoll nurrial veliayayalliQuilly, I OQyIHIpuSIulll OCHICD VI vurtipuLauvrial 1nneiycrive, AP 1=J, £UuU/, 11VIIVIUIU, UOoMA

El B2 33’_'/'— e
I

Bus
||EI=II.-ZIL—jII-2:'- Z.=0.012+0.5 [T12,=0.022+j0 '-'il--E

VD Ca

L.
o) 55

INDUCTIVE
LOALD

W

Memo- AV
~ - Cooiroller |
AV (1) 4—0 MODEL! |s l.ﬁ."ifi{“t}

Am(t+]je—] Identifier

Fig. 19.7 The single machine infinite bus configuration with the conventional AVE and
governor controllers, and neurocontroller.

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X.

120

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Aart-1)
Aart-2)
Apxr-3)
AV t-1)
AV(1-2)
AV (1-3)
AP, ,(t-1)
AP, ¢(1-2)
AP, ;(1-3)
AV (1-1)
av (1-2)
AV (1-3)

Fig. 12. Model neural-network structure with 12 mputs, 14 sigmoidal ludden
laver neurons, and two linear neurons.

Venayagamoorthy GK, Harley RG, Wunsch DC, “Implementation of Adaptive Critic Based Neurocontrollers for Turbogenerators in a
Multimachine Power System”, IEEE Transactions on Neural Networks, vol. 14, no. 5, September 2003, pp. 1047 - 1064.

121

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

UMR

Adxy)

Aat-1)

Aeft-2) Venayagamoorthy GK, Harley RG, Wunsch DC, “Comparison of Heuristic Dynamic

Al?'('r) Programming and Dual Heuristic Programming Adaptive Critics for Neurocontrol of
alt J(t)a Turbogenerator”, IEEE Transactions on Neural Networks, vol. 13, no. 3, May

avi(-ij 2002, pp. 764 - 773.

AF (1-2)

Fig. 6. HDP cntic neural network structure with six inputs, ten sigmoidal
hidden layer neurons, and one linear output neuron.

Aat-1)
Aéxt) Aaxe-2)
et MO
AV () ‘z‘:g::) AV(1:2)
V1) - AV(1-3)

aV(r-2) daxr)

Fig 13. DHP Critic nevral-network structure with six inputs. ten sigmoidal Fig 15, DHP action neural-network structure with six inputs, ten sigmoidal
Indden layer neurons. and two linear neurons. hidden layer neurons. and two linear output neurons.

Venayagamoorthy GK, Harley RG, Wunsch DC, “Implementation of Adaptive Critic Based Neurocontrollers for Turbogenerators in a
Multimachine Power System”, IEEE Transactions on Neural Networks, vol. 14, no. 5, September 2003, pp. 1047 - 1064.

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

'jl

e HELER R

63
60
[
E -
S
2 50 3
e e -) ' e
= EE [}{I]I}
= H CQT
0 - —- S -
i.: trrrrandennan CD}‘F‘;
350 - —- -
1 | 1 1 1
0 E 10 15 20 25 i

Times m ssconds

Fig. 19.13 Rotor angle of the micro-alternator for £5% step changes in the terminal voltage
reference (transmission line impedance 41 + Z2).

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X.

123

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

30 n
2 10
—;‘ 65
E 60 1
55 ‘
50
45
0 1 2 3 4 5 6 7

Time in seconds

Fig 19.15 FEotor angle of the micro-alternator for a temporary 30 ms three-phase short circuit
(transmission line impedance Z + Zo + Za).

G K Venayagamoorthy, et al, Approximate Dynamic Programming for Power Systems Control, in the Handbook of Learning and Approximate
Dynamic Programming, Edited by J Si, A G Barto, W B Powell, D Wunsch, Wiley-IEEE press, July 2004, ISBN: 0-471-66054-X.

124

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April1-5, 2007, Honolulu, USA

Multimachine Power System

UMR

A(ol
Governor . 1 4 s2 4
Micro #1 | ._%. . 3
o < | (> AL
WA, T AAA_TTM %
P Gl 0.01 j0.25[0.012 05 (925 j0.75 -
Micro-Turbine ‘ ;
Pt 33 EXC|ter s1 ;
Ao, El %
»| PSS ——0 -
L
V 0.022 Load % .
Vi — U j0.75 — Infinite
5 L~ Bus
2 %
Governor |e ;
A® Micro #2
APref2 2 L
6 %
L
—W_m -«
; i L
Micro-Turbine M. 0.01 J0.25 0.012 j0.50
Exciter
Prefz V
E2
Vref2 — AVR <

t2

Multimachine Power System

I:)refl 1 7 S2 4
Micro #1 —r%o— 3
0.012 J0.5 0.022 i0.75
o _ g
AP . Micro-Turbine g;np_r | g
Y o s .
AV, + (3 E1 g
L
+
Ver Load ;
0.022 #
Ao, 0.75 = . Infinite
AVy 5 5 .~ Bus
Governor |e - L
Ap_. Ao, Micro #2
6 L
—ANTTTT] ¢
! : L
Micro-Turbine ML 0.01 J0.25 0.012 j0.50
. Exciter
ref2 VE2
Vref2 — AVR [

Vt2

Micro-Machine Research Laboratory at the
wr' University of Natal, Durban, South Africa

124

© Ganesh Kumar Venayagamoorthy, IEEE*Symposium Series on Computational Intelligence, April~1-5, 2007, Honolulu, USA

128
© Ganesh Kumar Venayagamoorthy, December 2000/ January 2007 syigence, Apriti-5, 2007, Honolulu, USA

Machine #1: Trans. Line Impedance

Increase

2 |
o
c 1.01 i]
® A\ Py
o 1 /W = i
c—"c')'u O 99 - /A\ /'_.4:\\\§ — ~ - — i _ i

. 7 &_p ~ U""‘A"Fm—r_
c—i o/’ — m— CONV CONV
T 0.98 | V- |
IS \\/ — — = CONV_PSS_CONV
o 097 - DHP_CONV

10 10.5 11 11.5 12 125 13 13.5 14 14.5
Time in seconds

N

o
I

|

Load angle in degrees
w
0]
L
\\(
q
ﬁ\
i/l

e e
g N g R

s S NN CON_CONV
— — —. CONV_PSS CONV

— DHP_CONV

10 105 11 115 12 125 13 135 14 145 15
Time in seconds

w
o
5

N DN

o O
T T

\ \

129

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

& RJ Machine #2: Trans. Line Impedance Increase (@&

UMR - S > >
7p]
o 40 5
GE; [P\
c I e
o 35 -
= - CON_CONV
S — — —. CONV_PSS CONV
©
S 30 i DHP_ CONV
— —

10 12 14 16 18 20 22

Time in seconds

© Ganesh Kumar Venayagamoorthy, IEEE"Symposium Series on Computational Intelligence, April-1-5, 2007, Honolulu, USA™

130

