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Handling Uncertainty and Risk(1)

• Probability for quantifying uncertainty
- degree-of-belief
- frequentist (Pascale, Fermat)
- probability theory and statistics (20th century)

• Modern science: causal determinism
(A. Einstein)
Goal of science: estimating a true model or 
system identification
~ estimation of statistical distribution 
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Handling Uncertainty and Risk(2)

• Making decisions under uncertainty
= risk management

• Probabilistic approach:
- estimate probabilities (of future events)
- assign costs and minimize expected risk 

• Risk minimization approach:
- apply decisions to known past events
- select one minimizing expected risk 

• Common in all living things: learning, 
generalization
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Predictive learning: why and how

• The problem of predictive learning
Given past data + reasonable assumptions
Estimate unknown dependency for future 
predictions

• Driven by applications (not theory)
• 3 parts of Predictive Learning:

- conceptual/ philosophical
- mathematical (technical)
- practical (implementations, applications)
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Philosophy of science and induction

• Oxford English dictionary:
Induction is the process of inferring a 
general law or principle from the 
observations of particular instances.

• Clearly related to Predictive Learning.
• All science and (most of) human knowledge 

involves induction
• How to form ‘good’ inductive theories?
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Background: philosophy

William of Ockham: entities should not
be multiplied beyond necessity

Epicurus of Samos: If more than one 
theory is consistent with the 
observations, keep all theories
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Background: philosophy
Thomas Bayes: 
How to update/ revise beliefs in 

light of new evidence

Karl Popper: Every true 
(inductive) theory prohibits 
certain events or occurences, 
i.e. it should be falsifiable
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Background: philosophy
George W. Bush: 
I am The Decider
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Observations, Reality and Mind
Philosophy is concerned with the relationship btwn

- Reality (Nature)
- Sensory Perceptions
- Mental Constructs (interpretations of reality)

Three Philosophical Schools
• REALISM:

- objective physical reality perceived via senses
- mental constructs reflect objective reality

• IDEALISM:
- primary role belongs to ideas (mental constructs)
- physical reality is a by-product of Mind

• INSTRUMENTALISM:
- the goal of science is to produce useful theories
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3 Philosophical Schools
• Realism 

(materialism)

• Idealism

• Instrumentalism
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• Realism is essential to common sense, but can 
not be proven by logic arguments

• Idealism states that only mental constructs exist:
R. Descartes: Cogito ergo sum
I. Kant: … if I remove the thinking subject, the whole material world 
must at once vanish because it is nothing but a phenomenal 
appearance in the sensibility of ourselves as a subject, and a manner 
or species of representation.

• Hegel (1770-1831): Reality and Mind are parts of a system
Whatever exists (is real) is rational, and 
whatever is rational is real

• Instrumentalist view: 
Whatever is useful is rational and (maybe) real
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Inductive Inference and Generalization
• Any scientific theory ~ generalization over finite 

number of observations (i.e., experiments used to 
confirm it)

• Impossible to logically justify a new theory by 
experimental data alone 

need a philosophical principle known as 
• inductive inference = generalization from 

repeatedly observed instances (observations) to 
some as yet unobserved instances (Popper, 1953).
Similar to psychological induction (or learning by 
association – Pavlov’s conditional reflex etc.)

• Philosophy of Science and Predictive Learning
both are concerned with general strategies for 
obtaining good (valid) models from data
- known as inductive principles in learning theory
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OUTLINE
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Empirical Risk Minimization
• Two goals of inductive inference:

1. Explanation (of observed data)
2. Generalization for new data

• ERM is only concerned with 1st goal
• ERM ~ biological/ psychological 

induction (learning by association/ 
correlation)

• Example: continue given sequence
6, 10, 14, 18, ….
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Empirical Risk Minimization (ERM)
Given: training data 

and model estimates 
Find a function            that explains data best, i.e. 

minimizes total error 

is a non-negative loss function 
given a priori (reflects application requirements)

• Why/ when inductive models estimated via 
ERM can generalize???
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Statistical Learning Theory

• Also known as VC-theory
• Theory for estimating dependencies from 

finite samples (predictive learning setting)
• Based on the risk minimization approach
• All main concepts and results developed in 

1970’s but remained largely unknown
• Recent popularity due to success of 

Support Vector Machines
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Inductive Learning Setting
• The learning machine observes samples (x ,y), and returns 

an estimated response
• Goal of Learning: find a function (model)

minimizing Prediction Risk: 

Generator
of samples

Learning
Machine

System
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Two Common Learning Problems
• Learning ~ estimating mapping x → y

(in the sense of risk minimization)

• Binary Classification: estimating an 
indicator function (with 0/1 loss)

• Regression: estimating a real-valued 
function (with squared loss) 

• Assumptions: iid, training/test, loss function
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System Identification vs Imitation 
• The goal of learning ~ system imitation

rather than system identification

• Implications: curse-of-dimensionality 
philosophical

Generator
of samples

Learning
Machine

System

x f(x.w)
Loss

L(f(x,w),y)

y
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Keep-It-Direct Principle
• The goal of learning is generalization rather than 

estimation of true function (system identification)

• Keep-It-Direct Principle (Vapnik, 1995)
Do not solve an estimation problem of interest 
by solving a more general (harder) problem as 
an intermediate step

• A good predictive model reflects some properties of 
unknown distribution P(x,y)

• Since model estimation with finite data is ill-posed, 
one should never try to solve a more general 
problem than required by given application

Importance of formalizing application 
requirements as learning problem formulation.

min,y),w)) dP(Loss(y, f( →∫ xx
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Contributions of VC-theory
• The Goal of Learning (inductive learning)

system imitation vs system identification

• Two factors responsible for generalization
VC-dimension and empirical risk

• Keep-It-Direct Principle (Vapnik, 1995)

• Clear distinction between
- problem setting
- solution approach (inductive principle)
- learning algorithm
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Learning vs System Identification
• Consider regression problem

where unknown target function

• Goal 1: Prediction (system imitation)

• Goal 2: Function Approximation (system identification)

or

• Goal 2: curse-of-dimensionality
• Goal 1: good generalization still possible
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Induction with sparse high-dimensional data

• Inductive learning with high-dimensional, low 
sample size (HDLSS) data: n << d

• Gene microarray analysis
• Medical imaging (i.e., sMRI, fMRI)
• Object and face recognition
• Text categorization and retrieval
• Web search

• Sample size is much smaller than dimensionality 
of the input space, d ~ 10K–100K, n ~ 100’s

• Inductive learning methods usually fail for such 
HDLSS data.
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Insights provided by SVM(VC-theory)

• Why linear classifiers can generalize?
(1) Margin is large (relative to R)
(2) % of SV’s is small
(3) ratio d/n is small

• SVM offers an effective way to control 
complexity (via margin + kernel selection) 
i.e. implementing (1) or (2) or both

• What happens when d>>n ?



28

Sparse High-Dimensional Data

• HDLSS data looks like a porcupine: the volume of 
a sphere inscribed in a d-dimensional cube gets 
smaller as the volume of d-cube gets larger !

• A point is closer to an edge than to another point
• Pairwise distances between points are the same
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Classification with HDLSS data

• Data is linearly separable (since d>>n)

• Empirical studies: 
for HDLSS data, many reasonable methods give 
similar performance (LDA, SVM, boosting,….)

• Most data samples are SV’s
generalization controlled by margin size

(under standard classification formulation)
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Degradation of SVM performance with d
• Synthetic Data for binary classifier:

30 samples per each class, with x-values from a spherical (zero 
mean, unit variance) Gaussian in a d-dimensional space, except that 
the first coordinate has mean +3.2 for Class +1, −3.2 for Class −1. 

• Conclusion: Good generalization for HDLSS is difficult
(using plain-vanilla SVM or any other classifier)
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How to improve generalization for HDLSS?
Conventional approaches: use a priori knowledge
• Preprocessing and feature selection (prior to learning)
• Model parameterization (~ selection of good kernels)
• Generate artificial training examples (Virtual SV method)

The idea is to apply the desired invariance transformations 
to SV’s (Schoelkopf and Smola, 2001):
(1) Apply SVM classifier to training data
(2) Generate Virtual SVs by applying invariance 
transformations to support vectors obtained in (1)
(3) Train another SV classifier using Virtual SV’s.

Non-inductive learning formulations
• Seek new generic formulations (not methods!) that better 

reflect application requirements
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Formalizing Application Requirements
• Classical statistics: parametric model is given (by experts)
• Modern applications: complex iterative process

Non-inductive formulation may be better than inductive

A P P L I C A T I O N     N E E D S

L o s s
F u n c t i o n

I n p u t ,  o u t p u t ,
o t h e r  v a r i a b l e s

T r a i n i n g /
t e s t  d a t a

A d m i s s i b l e
M o d e l s

F O R M A L  P R O B L E M  S T A T E M E N T

L E A R N I N G  T H E O R Y
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Philosophic Motivation
• Philosophical view 1 (Realism): 

Learning ~ search for the truth (estimation of 
true dependency from available data)
System identification

~ Inductive Learning

where a priori knowledge is about the true model
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Philosophic Motivation (cont’d)
• Philosophical view (Instrumentalism):

Learning ~ search for the instrumental knowledge 
(estimation of useful dependency from available data)
VC-theoretical approach ~ focus on learning formulation
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VC-theoretical approach
• Focus on the learning setting 

(formulation), not on the learning method
• Learning formulation depends on:

(1) available data
(2) application needs
(3) a priori knowledge (assumptions)

• Factors (1)-(3) combined using Vapnik’s
Keep-It-Direct (KID) Principle yield 
learning formulation
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Contrast these two approaches
• Conventional (statistics, data mining):

a priori knowledge typically reflects properties of a 
true (good) model, i.e.
a priori knowledge ~ parameterization

• Why a priori knowledge is about the true model?
• VC-theoretic approach:

a priori knowledge ~ how to use/ incorporate 
available data into the problem formulation
often a priori knowledge ~ available data samples
of different type new learning settings

),( wf x
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Modifications of inductive setting
• Inductive learning assumes

Finite training set     
Predictive model derived using only training data
Prediction for all possible test inputs

• Possible modifications
1. Predict only for given test points transduction
2. A priori knowledge in the form of additional ‘typical’
samples learning through contradiction
3. Additional (group) info about training data Learning 
with structured data
4. Additional (group) info about training + test data    
Multi-task learning

( )ii y,x
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Examples of non-inductive settings
• Application domain: hand-written digit recognition
• Standard inductive setting
• Transduction: labeled training + unlabeled data
• Learning through contradictions:

labeled training data ~ examples of digits 5 and 8
unlabeled examples (Universum) ~ all other (eight) digits

• Learning with structured data:
Training data ~ t groups (i.e., from t different persons)
Test data ~ group label not known

• Multi-task learning:
Training data ~ t groups (from different persons)
Test data ~ t groups (group label is known)
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Transduction (Vapnik, 1982, 1995)
• How to incorporate unlabeled test data into the 

learning process? Assume binary classification

• Estimating function at given points
Given: labeled training data         
and unlabeled test points 

Estimate: class labels                        at these test points 

Goal of learning: minimization of risk on the test set:

where 
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Transduction vs Induction

a priori knowledge 
assumptions

estimated 
function

training  
data

predicted 
output

induction deduction

transduction
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Transduction based on size of margin
• Binary classification, linear parameterization,      

joint set of (training + working) samples
• Equivalence classes (on a joint set)               –see 

next page

• Goal of learning
(1) explain well available data (~ joint set)
(2) achieve max falsifiability (~ margin)

~ Classify test (working)  samples by the equivalence 
class that explains well available data and has large 
margin

• Optimization formulation (see later)

NFFF ,...,, 21
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• Example of two equivalence classes
• The size of an equivalence class is indexed by the 

largest value of its margin on a joint set
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Optimization formulation for SVM transduction
• Given: joint set of (training + working) samples
• Denote slack variables for training,    for working 
• Minimize

subject to

where 
Solution (~ decision boundary)

• Unbalanced situation (small training/ large test)
all unlabeled samples assigned to one class 

• Additional constraint:
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Optimization formulation (cont’d)
• Hyperparameters control the trade-off 

between explanation and falsifiability
• Soft-margin inductive SVM is a special case of 

soft-margin transduction with zero slacks
• Dual + kernel version of SVM transduction
• Transductive SVM optimization is not convex

(~ non-convexity of the loss for unlabeled data) –
**elaborate/explain**

different opt. heuristics ~ different solutions
• Exact solution (via exhaustive search) possible for 

small number of test samples (m) – but this 
solution is NOT very useful (~ inductive SVM).

*CandC

0* =jξ
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Many applications for transduction
• Text categorization: classify word documents 

into a number of predetermined categories
• Email classification: Spam vs non-spam
• Web page classification
• Image database classification
• All these applications:

- high-dimensional data
- small labeled training set (human-labeled)
- large unlabeled test set
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Example application

• Prediction of molecular bioactivity for drug 
discovery

• Training data~1,909; test~634 samples
• Input space ~ 139,351-dimensional
• Prediction accuracy:
SVM induction ~74.5%; transduction ~ 82.3%
Ref: J. Weston et al, KDD cup 2001 data analysis: prediction 

of molecular bioactivity for drug design – binding to 
thrombin, Bioinformatics 2003
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Inference through contradiction (Vapnik 2006)

• Motivation: what is a priori knowledge?
- info about the space of admissible models
- info about admissible data samples

• Labeled training samples + unlabeled samples 
from the Universum

• Universum samples encode info about the region 
of input space (where application data lives):
- Usually from a different distribution than 
training/test data

• Examples of the Universum data
• Large improvement for small sample size n
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Main Idea

Fig. courtesy of J. Weston (NEC Labs)

• Handwritten digit recognition: digit 5 vs 8



50

Learning with the Universum
• Inductive setting for binary classification

Given: labeled training data         
and unlabeled Universum samples 
Goal of learning: minimization of prediction risk  (as in 
standard inductive setting) 

• Balance between two goals:
- explain labeled training data using large-margin 
hyperplane
- achieve maximum falsifiability ~ max # contradictions
on the Universum

~ For separating hyperplanes, a set of equivalence classes
is ordered by the number of contradictions on the 
Universum

( )*
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Inference through contradictions
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SVM inference through contradictions
• Given: labeled training + unlabeled Universum samples

• Denote slack variables for training,    for Universum

• Minimize where

subject to for labeled data

for the Universum

where the Universum samples use    -insensitive loss

• Convex optimization
• Hyper-parameters control the trade-off btwn

minimization of errors and maximizing the # contradictions
• When      =0, standard soft-margin SVM
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-insensitive loss for Universum samples
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Application Study (Vapnik, 2006)
• Binary classification of handwritten digits 5 and 8
• For this binary classification problem, the following 

Universum sets had been used:
U1: randomly selected digits (0,1,2,3,4,6,7,9)

U2: randomly mixing pixels from images 5 and 8

U3: average of randomly selected examples of 5 and 8

Training set size tried: 250, 500, … 3,000 samples

Universum set size: 5,000 samples

• Prediction error: improved over standard SVM, i.e. 
for 500 training samples: 1.4% vs 2% (SVM)
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Another application example
• Gender classification of human faces (male/ female)
• Data: 260 pictures of 52 individuals (20 females and 32 males, 5 pictures for 

each individual) from Univ. of Essex
• Data representation and pre-processing: image size 46x59 – converted into 

gray-scale image, following standard image processing (histogram equalization)

• Training data: 5 female and 8 male photos
• Test data: remaining 39 photos (of other people)
• Universum set generation:

U1 Average: randomly get one male and one female fro the training set, 
and compute their average vector
U2 Empirical distribution: estimate pixel-wise distribution of  training data. 
Generate a new picture from this distribution. randomly mixing pixels from 
images 5 and 8

• Experimental procedure: randomly select 13 training samples (and 39 
test samples). Estimate and compare inductive SVM classifier with SVM 
classifier using N Universum samples (where N=100, 500, 1000).
- Report results for 4 partitions (of training and test data)
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Results of gender classification (X. Bai, 2006)
• Classification accuracy: improves vs standard SVM by ~ 2% 

with U1, and ~ 1% with U2 Universum

• Universum generated by averaging gives better results for 
this problem, when number of Universum samples N = 500 
or 1,000 (see above)
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Discussion

• Maximum margin principle (SVM) 
performs complexity control independent 
of the data distribution

• Inference by contradiction principle
controls complexity depending on the 
properties of data distribution

• In both instances, complexity control is 
achieved independent of dimensionality.
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Discussion (cont’d)
• Technical aspects: why the Universum

data improves generalization when d>>n? 
-SVM is solved in a low-dimensional 
subspace implicitly defined by the 
Universum data

• How to specify the Universum data?
- no formal procedure exists

• Philosophical aspects: relation to human 
learning (cultural Universum)? New type of 
inference? Impact on psychology? 
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Learning with Structured Data(Vapnik, 2006)

• Application: Handwritten digit recognition
Labeled training data provided by t persons (t >1)             
Goal 1: find a classifier that will generalize well for future 
samples generated by these persons ~ Learning with 
Structured Data (LWSD)
Goal 2: find t classifiers with generalization (for each 
person) ~ Multi-Task Learning (MTL)

• Application: Medical diagnosis
Labeled training data provided by t groups of patients (t >1), 
say men and women (t = 2)             
Goal 1: estimate a classifier to predict/diagnose a disease 
using training data from t groups of patients ~ LWSD
Goal 2: find t classifiers specialized for each group of 
patients ~ MTL



60

Multi-task Learning

Training 
Data

Predictive 
Model

Training 
Data

Predictive 
Model

Training 
Data

Predictive 
Model

Training 
Data

Predictive 
Model

Task 
Relatedness 
Modeling

(a)

(b)

Task 1

Task 2

Task t

(a) Single task 
learning

(b) Multi-task 
learning (MTL)
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Problem setting for LWSD
• Assume binary classification problem
• Training data ~ a union of t related groups

Each group r has       i.i.d. samples

generated from a joint distribution

• Training and test data are i.i.d. samples from the 
same distribution

• Goal of learning: estimate a single model 
minimizing prediction risk (similar to inductive learning)
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Problem setting for MTL
• Assume binary classification problem
• Training data ~ a union of t related groups(tasks)

Each group r has       i.i.d. samples

generated from a joint distribution

• Test data: task label for test samples is known

• Goal of learning: estimate t models
such that the sum of expected losses for all tasks is 
minimized:
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SVM+ technology (Vapnik, 2006)
• Map the input vectors simultaneously into:

- Decision space (standard SVM classifier)
- Correcting space (where correcting functions
model slack variables for different groups) 

• Decision space/function ~ the same for all groups
• Correcting functions ~ different for each group 

(but correcting space may be the same)
• SVM+ optimization formulation incorporates:

- the capacity of decision function
- capacity of correcting functions              for group r
- relative importance (weight)      of these two capacities

( )ww,
( )rr ww ,

γ
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SVM+ technology 

Decision function 

Decision space

Correcting space 1

Correcting functions 

Group1
Group2
Class 1
Class -1

Correcting space 2

mapping
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Application Study (Liang and Cherkassky, 2007)

• SVM+ technology is new, and is rather complex. 
Single empirical comparison study: fMRI data

• fMRI data analysis problem (CMU data set)
- six subjects presented with {picture or sentence}
- fMRI data is recorded over 16 time intervals
- need to learn binary classifier fMRI image class

• Data preprocessing (Wang et al, 2004)
- extract 7 input features (Regions of Interest) from high–dim. 
fMRI image input vector has 16x7=112 components

• Comparison between
standard SVM (data from all 6 subjects is pooled together)
SVM+ method (6 groups where each group has 80 samples)
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fMRI Application Study (cont’d)

• Experimental protocol: (randomly) split the data
- 60% ~ training
- 20% ~ validation (for tuning parameters)
- 20% ~ test (for estimating prediction error)

• Details of methods used:
- linear SVM classifier (single parameter C)
- classifier (3 parameters: linear kernel for decision 
space, RBF kernel for correcting space, and parameter     )

• Comparison results (over 10 trials): 
- standard SVM ~ ave test error: 22.2 % (st. dev. 3.8%)
- ~ ave test error: 20.2% (st.dev. 3.1%)

+γSVM
γ

+γSVM
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Advantages+limitations of noninductive settings
• Advantages

- makes common sense
- follows methodological framework (VC-theory)
- yields better generalization (but not always)
- new directions for research

• Limitations
- need to formalize application requirements
- generally more complex learning formulations
- more difficult model selection (# parameters)
- few known empirical comparisons (to date)
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Vapnik’s Imperative
• Vapnik’s Imperative:

asking the right question (with finite data)             
most direct learning problem formulation

• ~ Controlling the goals of inference, in order to 
produce a better-posed problem

• Three types of such restrictions (Vapnik, 2006)
- regularization (constraining function smoothness)
- SRM puts constraints on VC-dim of approx fcts
- choice of inference models

• Philosophical interpretation (of restrictions):
Find a model that explains well available data and
has large falsifiability
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