Non-Inductive Approaches for Learning with Sparse Data

Vladimir Cherkassky University of Minnesota <u>cherk001@umn.edu</u> Presented at IJCNN-07

Electrical and Computer Engineering

Acknowledgements

- Joint work with (former) graduate students at UMN
 Y. Ma (Honeywell Labs), T. Xiong (eBay), L. Liang
- Special thanks to V. Vapnik (NEC Labs) for discussions on non-inductive learning methods and VC-falsifiability

OUTLINE

- Background uncertainty and risk-taking predictive learning philosophy and induction
- Inductive learning and VC-theory
- Motivation for non-inductive approaches
- Non-inductive learning formulations
- Summary

Handling Uncertainty and Risk(1)

- Probability for quantifying uncertainty
 - degree-of-belief
 - frequentist (Pascale, Fermat)
 - probability theory and statistics (20th century)
- Modern science: causal determinism (A. Einstein)
- →Goal of science: estimating a true model or system identification
 - ~ estimation of statistical distribution

Handling Uncertainty and Risk(2)

- Making decisions under uncertainty = risk management
- Probabilistic approach:
 - estimate probabilities (of future events)
 - assign costs and minimize expected risk
- Risk minimization approach:
 - apply decisions to known past events
 - select one minimizing expected risk
- Common in all living things: learning, generalization

Predictive learning: why and how

- The problem of predictive learning
 Given past data + reasonable assumptions
 Estimate unknown dependency for future predictions
- Driven by applications (not theory)
- 3 parts of Predictive Learning:
 - conceptual/ philosophical
 - mathematical (technical)
 - practical (implementations, applications)

Philosophy of science and induction

• Oxford English dictionary:

Induction is the process of inferring a general law or principle from the observations of particular instances.

- Clearly related to Predictive Learning.
- All science and (most of) human knowledge involves induction
- How to form 'good' inductive theories?

Background: philosophy

William of Ockham: entities should not be multiplied beyond necessity

Epicurus of Samos: If more than one theory is consistent with the observations, keep all theories

Background: philosophy

Thomas Bayes:

How to update/ revise beliefs in light of new evidence

Karl Popper: Every true (inductive) theory prohibits certain events or occurences, i.e. it should be **falsifiable**

Background: philosophy

George W. Bush: I am The Decider

Observations, Reality and Mind

Philosophy is concerned with the relationship btwn

- Reality (Nature)
- Sensory Perceptions
- Mental Constructs (interpretations of reality)

Three Philosophical Schools

- **REALISM**:
 - objective physical reality perceived via senses
 - mental constructs reflect objective reality
- IDEALISM:
 - primary role belongs to ideas (mental constructs)
 - physical reality is a by-product of Mind
- INSTRUMENTALISM:
 - the goal of science is to produce useful theories

3 Philosophical Schools

 Realism (materialism)

• Idealism

Instrumentalism

- Realism is essential to common sense, but can not be proven by logic arguments
- Idealism states that only mental constructs exist:
 R. Descartes: Cogito ergo sum

I. Kant: ... if I remove the thinking subject, the whole material world must at once vanish because it is nothing but a phenomenal appearance in the sensibility of ourselves as a subject, and a manner or species of representation.

- Hegel (1770-1831): Reality and Mind are parts of a system Whatever exists (is real) is rational, and whatever is rational is real
- Instrumentalist view:

Whatever is useful is rational and (maybe) real

Inductive Inference and Generalization

- Any scientific theory ~ generalization over finite number of observations (i.e., experiments used to confirm it)
- Impossible to logically justify a new theory by experimental data alone

 \rightarrow need a philosophical principle known as

- inductive inference = generalization from repeatedly observed instances (observations) to some as yet unobserved instances (Popper, 1953).
 Similar to psychological induction (or learning by association – Pavlov's conditional reflex etc.)
- Philosophy of Science and Predictive Learning both are concerned with general strategies for obtaining good (valid) models from data
 - known as inductive principles in learning theory

OUTLINE

- Background
- Inductive learning and VC-theory
 - Empirical Risk Minimization
 - Inductive learning setting
 - System identification vs imitation
- Motivation for non-inductive approaches
- Non-inductive learning formulations
- Summary

Empirical Risk Minimization

- Two goals of inductive inference:
 - 1. Explanation (of observed data)
 - 2. Generalization for new data
- ERM is only concerned with 1st goal
- ERM ~ biological/ psychological induction (learning by association/ correlation)
- Example: continue given sequence
 6, 10, 14, 18,

Empirical Risk Minimization (ERM)

Given: training data $(\mathbf{x}_i, y_i), i = 1, 2, ... n$ and model estimates $\hat{y} = f(\mathbf{x}, w)$

Find a function $f(\mathbf{x}, w^*)$ that explains data best, i.e. minimizes total error $\frac{1}{n} \sum_{i=1}^n L(y_i, f(\mathbf{x}_k, w)) \rightarrow min$

 $L(y, f(\mathbf{x}, w))$ is a non-negative loss function given a priori (reflects application requirements)

• Why/ when inductive models estimated via ERM can generalize???

Statistical Learning Theory

- Also known as VC-theory
- Theory for estimating dependencies from finite samples (predictive learning setting)
- Based on the *risk minimization* approach
- All main concepts and results developed in 1970's but remained largely unknown
- Recent popularity due to success of Support Vector Machines

Inductive Learning Setting

- The *learning machine* observes samples (**x**, *y*), and returns an estimated response $\hat{y} = f(\mathbf{x}, w)$
- Goal of Learning: find a function (model) $f(\mathbf{x}, w^*)$ minimizing Prediction Risk: $\int Loss(y, f(\mathbf{x}, w)) dP(\mathbf{x}, y) \rightarrow min$

Two Common Learning Problems

- Learning ~ estimating mapping $\mathbf{x} \rightarrow y$ (in the sense of risk minimization)
- Binary Classification: estimating an indicator function (with 0/1 loss)
- Regression: estimating a real-valued function (with squared loss)
- Assumptions: iid, training/test, loss function

System Identification vs Imitation

 The goal of learning ~ system imitation rather than system identification

 Implications: curse-of-dimensionality philosophical

Keep-It-Direct Principle

• The goal of learning is generalization rather than estimation of true function (system identification)

 $\int Loss(y, f(\mathbf{x}, w)) dP(\mathbf{x}, y) \rightarrow min$

- Keep-It-Direct Principle (Vapnik, 1995)
 Do not solve an estimation problem of interest by solving a more general (harder) problem as an intermediate step
- A good predictive model reflects some properties of unknown distribution P(x,y)
- Since model estimation with finite data is ill-posed, one should never try to solve a more general problem than required by given application
 → Importance of formalizing application

requirements as learning problem formulation.

Contributions of VC-theory

- The Goal of Learning (inductive learning) system imitation vs system identification
- Two factors responsible for generalization VC-dimension and empirical risk
- Keep-It-Direct Principle (Vapnik, 1995)
- Clear distinction between
 - problem setting
 - solution approach (inductive principle)
 - learning algorithm

Learning vs System Identification

 Consider regression problem where unknown target function $y = g(\mathbf{x}) + \delta$ $g(\mathbf{x}) = E(y/\mathbf{x})$

- Goal 1: Prediction (system imitation) $R(\mathbf{w}) = \int (y - f(\mathbf{x}, \mathbf{w}))^2 dP(\mathbf{x}, y) \rightarrow \min$
- Goal 2: Function Approximation (system identification) or $R(\mathbf{w}) = \int (f(\mathbf{x}, \mathbf{w}) - g(\mathbf{x}))^2 d\mathbf{x} \to \min \left\| f(\mathbf{x}, \mathbf{w}) - E(y/\mathbf{x}) \right\| \to \min$
- Goal 2: \rightarrow curse-of-dimensionality
- Goal 1: good generalization still possible

OUTLINE

- Background
- Inductive learning and VC-theory
- Motivation for non-inductive approaches
 - Induction with sparse high-dimensional data
 - Formalizing application requirements
 - Philosophical motivation
- Non-inductive learning formulations
- Summary

Induction with sparse high-dimensional data

- Inductive learning with high-dimensional, low sample size (HDLSS) data: n << d
 - Gene microarray analysis
 - Medical imaging (i.e., sMRI, fMRI)
 - Object and face recognition
 - Text categorization and retrieval
 - Web search
- Sample size is much smaller than dimensionality of the input space, d ~ 10K–100K, n ~ 100's
- Inductive learning methods usually fail for such HDLSS data.

Insights provided by SVM(VC-theory)

- Why linear classifiers can generalize?
 (1) Margin is *large* (relative to *R*)
 (2) % of SV's is *small*(3) ratio *d/n* is *small*
- SVM offers an effective way to control complexity (via margin + kernel selection)
 i.e. implementing (1) or (2) or both
- What happens when *d>>n*?

Sparse High-Dimensional Data

- HDLSS data looks like a porcupine: the volume of a sphere inscribed in a *d*-dimensional cube gets smaller as the volume of *d*-cube gets larger !
- A point is *closer to an edge* than to another point
- Pairwise distances between points are the same

Classification with HDLSS data

- Data is *linearly separable* (since d>>n)
- Empirical studies: for HDLSS data, many *reasonable* methods give similar performance (LDA, SVM, boosting,....)
- Most data samples are SV's
 → generalization controlled by margin size (under standard classification formulation)

Degradation of SVM performance with d

• Synthetic Data for binary classifier:

30 samples per each class, with **x**-values from a spherical (*zero mean, unit variance*) Gaussian in a *d*-dimensional space, except that the first coordinate has mean +3.2 for Class +1, -3.2 for Class -1.

 Conclusion: Good generalization for HDLSS is difficult (using plain-vanilla SVM or any other classifier)

How to improve generalization for HDLSS?

Conventional approaches: use a priori knowledge

- Preprocessing and feature selection (prior to learning)
- Model parameterization (~ selection of good kernels)
- Generate artificial training examples (Virtual SV method) The idea is to apply the desired invariance transformations to SV's (Schoelkopf and Smola, 2001):
 (1) Apply SVM classifier to training data
 (2) Generate Virtual SVs by applying invariance transformations to support vectors obtained in (1)
 (3) Train another SV classifier using Virtual SV's.

Non-inductive learning formulations

 Seek new generic formulations (not methods!) that better reflect application requirements

Formalizing Application Requirements

- Classical statistics: parametric model is given (by experts)
- Modern applications: complex iterative process
 - \rightarrow Non-inductive formulation may be better than inductive

Philosophic Motivation

- Philosophical view 1 (Realism): Learning ~ search for the truth (estimation of true dependency from available data)
- → System identification

where a priori knowledge is about the true model

Philosophic Motivation (cont'd)

- Philosophical view (Instrumentalism): Learning ~ search for the instrumental knowledge (estimation of useful dependency from available data)
- → VC-theoretical approach ~ focus on learning formulation

VC-theoretical approach

- Focus on the learning setting (formulation), *not* on the learning method
- Learning formulation depends on:
 - (1) available data
 - (2) application needs
 - (3) a priori knowledge (assumptions)
 - Factors (1)-(3) combined using Vapnik's Keep-It-Direct (KID) Principle yield learning formulation

Contrast these two approaches

• Conventional (statistics, data mining):

a priori knowledge typically reflects properties of a true (good) model, i.e.

a priori knowledge ~ parameterization $f(\mathbf{x}, w)$

- Why a priori knowledge is about the true model?
- VC-theoretic approach:

a priori knowledge ~ how to use/ incorporate available data into the problem formulation often a priori knowledge ~ available data samples of different type \rightarrow new learning settings

OUTLINE

- Background
- Inductive learning and VC-theory
- Motivation for non-inductive approaches
- Non-inductive learning formulations
 Transduction
 Inference through contradictions
 Learning with structured data
 Multi-task learning
 - Summary

Modifications of inductive setting

• Inductive learning assumes

Finite training set (\mathbf{x}_i, y_i)

Predictive model derived using only training data Prediction for all possible test inputs

Possible modifications

1. Predict only for given test points \rightarrow transduction

2. A priori knowledge in the form of additional 'typical' samples \rightarrow learning through contradiction

3. Additional (group) info about training data \rightarrow Learning with structured data

4. Additional (group) info about training + test data →
 Multi-task learning

Examples of non-inductive settings

- Application domain: hand-written digit recognition
- Standard inductive setting
- Transduction: labeled training + unlabeled data
- Learning through contradictions: labeled training data ~ examples of digits 5 and 8 unlabeled examples (Universum) ~ all other (eight) digits
- Learning with structured data: Training data ~ t groups (i.e., from t different persons) Test data ~ group label not known
- Multi-task learning:

Training data ~ *t* groups (from different persons) Test data ~ *t* groups (group label is known)

Transduction (Vapnik, 1982, 1995)

- How to incorporate unlabeled test data into the learning process? Assume binary classification
- Estimating function at given points

Given: labeled training data (\mathbf{x}_i, y_i) i = 1,..., nand unlabeled test points (\mathbf{x}_j^*) j = 1,..., m

Estimate: class labels $\mathbf{y}^* = (y_1^*, \dots, y_m^*)$ at these test points

Goal of learning: minimization of risk on the test set:

$$R(\mathbf{y}^*) = \frac{1}{m} \sum_{j=1}^{m} \int_{y} L(y, y_j^*) dP(y / \mathbf{x}_j^*) \text{ where } \mathbf{y}^* = (f(\mathbf{x}_1^*, \omega), \dots, f(\mathbf{x}_m^*, \omega))$$

Transduction vs Induction

Transduction based on size of margin

- Binary classification, linear parameterization, joint set of (training + working) samples
- Equivalence classes (on a joint set) F₁, F₂,..., F_N-see next page
- Goal of learning
 - (1) explain well available data (~ joint set)
 - (2) achieve max falsifiability (~ margin)
- Classify test (working) samples by the equivalence class that explains well available data and has large margin
- \rightarrow Optimization formulation (see later)

- Example of two equivalence classes
- The size of an equivalence class is indexed by the largest value of its margin on a joint set

Optimization formulation for SVM transduction

- Given: joint set of (training + working) samples
- Denote slack variables ξ_i for training, ξ_j^* for working
- Minimize $R(\mathbf{w},b) = \frac{1}{2}(\mathbf{w}\cdot\mathbf{w}) + C\sum_{i=1}^{n} \xi_{i} + C^{*}\sum_{j=1}^{m} \xi_{j}^{*}$ subject to $\begin{cases} y_{i}[(\mathbf{w}\cdot\mathbf{x}_{i}) + b] \ge 1 - \xi_{i} \\ y_{j}^{*}[(\mathbf{w}\cdot\mathbf{x}_{i}) + b] \ge 1 - \xi_{j}^{*} \\ \xi_{i}, \xi_{j}^{*} \ge 0, i = 1, ..., n, j = 1, ..., m \end{cases}$ where $y_{j}^{*} = sign(\mathbf{w}\cdot\mathbf{x}_{j} + b), j = 1, ..., m$
 - → Solution (~ decision boundary) $D(\mathbf{x}) = (\mathbf{w}^* \cdot \mathbf{x}) + b^*$
- Unbalanced situation (small training/ large test)
 → all unlabeled samples assigned to one class
- Additional constraint: $\frac{1}{n}\sum_{i=1}^{n} y_i = \frac{1}{m}\sum_{i=1}^{m} [($

$$\int_{1} \left[(\mathbf{W} \cdot \mathbf{X}_{i}) + b \right]$$

Optimization formulation (cont'd)

- Hyperparameters *C* and *C*^{*} control the trade-off between explanation and falsifiability
- Soft-margin inductive SVM is a special case of soft-margin transduction with zero slacks $\xi_j^* = 0$
- Dual + kernel version of SVM transduction
- Transductive SVM optimization is not convex (~ non-convexity of the loss for unlabeled data) – **<u>elaborate/explain</u>**

 \rightarrow different opt. heuristics ~ different solutions

 Exact solution (via exhaustive search) possible for small number of test samples (m) – but this solution is NOT very useful (~ inductive SVM).

Many applications for transduction

- Text categorization: classify word documents into a number of predetermined categories
- Email classification: Spam vs non-spam
- Web page classification
- Image database classification
- All these applications:
 - high-dimensional data
 - small labeled training set (human-labeled)
 - large unlabeled test set

Example application

- Prediction of molecular bioactivity for drug discovery
- Training data~1,909; test~634 samples
- Input space ~ 139,351-dimensional
- Prediction accuracy:

SVM induction ~74.5%; transduction ~ 82.3%

Ref: J. Weston et al, KDD cup 2001 data analysis: prediction of molecular bioactivity for drug design – binding to thrombin, *Bioinformatics 2003*

Inference through contradiction (Vapnik 2006)

- *Motivation:* what is a priori knowledge?
 - info about the **space of admissible models**
 - info about admissible data samples
- Labeled training samples + unlabeled samples from the Universum
- Universum samples encode info about the region of input space (where application data lives):

- Usually from a different distribution than training/test data

- Examples of the Universum data
- Large improvement for small sample size *n*

Main Idea

Handwritten digit recognition: digit 5 vs 8

Fig. courtesy of J. Weston (NEC Labs)

Learning with the Universum

- Inductive setting for binary classification *Given:* labeled training data (\mathbf{x}_i, y_i) i = 1,..., nand unlabeled Universum samples (\mathbf{x}_j^*) j = 1,..., m *Goal of learning:* minimization of prediction risk (as in standard inductive setting)
- Balance between two goals:
 - explain labeled training data using large-margin hyperplane
 - achieve maximum falsifiability ~ max # contradictions on the Universum
- For separating hyperplanes, a set of equivalence classes is ordered by the number of contradictions on the Universum

Inference through contradictions

SVM inference through contradictions

- Given: labeled training + unlabeled Universum samples
- **Denote slack variables** ξ_i for training, ξ_j^* for Universum
- Minimize $R(\mathbf{w},b) = \frac{1}{2}(\mathbf{w}\cdot\mathbf{w}) + C\sum_{i=1}^{n} \xi_{i} + C^{*}\sum_{j=1}^{m} \xi_{j}^{*}$ where $C, C^{*} \ge 0$ subject to $y_{i}[(\mathbf{w}\cdot\mathbf{x}_{i})+b] \ge 1-\xi_{i}$ ξ_{i} , $\ge 0, i=1,...,n$ for labeled data $|(\mathbf{w}\cdot\mathbf{x}_{i})+b| \le \varepsilon + \xi_{i}^{*}$ $\xi_{i}^{*} \ge 0, j=1,...,m$ for the Universum

where the Universum samples use \mathcal{E} -insensitive loss

Convex optimization

Е

- Hyper-parameters $C, C^* \ge 0$ control the trade-off btwn minimization of errors and maximizing the # contradictions
- When $C^*=0$, \rightarrow standard soft-margin SVM

$\boldsymbol{\mathcal{E}}\xspace$ -insensitive loss for Universum samples

Application Study (Vapnik, 2006)

- Binary classification of handwritten digits 5 and 8
- For this binary classification problem, the following Universum sets had been used:
 - *U1*: randomly selected digits (0,1,2,3,4,6,7,9)
 - U2: randomly mixing pixels from images 5 and 8
 - U3: average of randomly selected examples of 5 and 8 Training set size tried: 250, 500, ... 3,000 samples Universum set size: 5,000 samples
- Prediction error: improved over standard SVM, i.e. for 500 training samples: 1.4% vs 2% (SVM)

Another application example

- Gender classification of human faces (male/ female)
- Data: 260 pictures of 52 individuals (20 females and 32 males, 5 pictures for each individual) from Univ. of Essex
- Data representation and pre-processing: image size 46x59 converted into gray-scale image, following standard image processing (histogram equalization)

- Training data: 5 female and 8 male photos
- Test data: remaining 39 photos (of other people)
- Universum set generation:

U1 Average: randomly get one male and one female fro the training set, and compute their average vector

U2 Empirical distribution: estimate pixel-wise distribution of training data. Generate a new picture from this distribution. randomly mixing pixels from images 5 and 8

- Experimental procedure: randomly select 13 training samples (and 39 test samples). Estimate and compare inductive SVM classifier with SVM classifier using *N* Universum samples (where *N*=100, 500, 1000).
 - Report results for 4 partitions (of training and test data)

Results of gender classification (X. Bai, 2006)

 Classification accuracy: improves vs standard SVM by ~ 2% with U1, and ~ 1% with U2 Universum

 Universum generated by averaging gives better results for this problem, when number of Universum samples N = 500 or 1,000 (see above)

Discussion

- Maximum margin principle (SVM) performs complexity control independent of the data distribution
- Inference by contradiction principle controls complexity depending on the properties of data distribution
- In both instances, complexity control is achieved independent of dimensionality.

Discussion (cont'd)

 Technical aspects: why the Universum data improves generalization when d>>n?

-SVM is solved in a *low-dimensional subspace implicitly defined* by the Universum data

- How to specify the Universum data?
 - no formal procedure exists
- Philosophical aspects: relation to human learning (cultural Universum)? New type of inference? Impact on psychology?

Learning with Structured Data(Vapnik, 2006)

• Application: Handwritten digit recognition

Labeled training data provided by *t* persons (t >1) Goal 1: find a classifier that will generalize well for future samples generated by these persons ~ Learning with Structured Data (LWSD)

Goal 2: find *t* classifiers with generalization (for each person) ~ Multi-Task Learning (MTL)

• Application: Medical diagnosis

Labeled training data provided by *t* groups of patients (t > 1), say men and women (t = 2)

Goal 1: estimate a classifier to predict/diagnose a disease using training data from *t* groups of patients ~ LWSD Goal 2: find *t* classifiers specialized for each group of patients ~ MTL

Multi-task Learning

60

Problem setting for LWSD

- Assume binary classification problem
- Training data ~ a union of *t* related groups Each group *r* has n_r *i.i.d.* samples (\mathbf{x}_i^r, y_i^r) $i = 1, 2, ..., n_r$ r = 1, 2, ..., t

generated from a joint distribution $P_r(\mathbf{x}, y)$

- Training and test data are *i.i.d.* samples from the same distribution $P(\mathbf{x}, y) = \bigcup_{r=1,..t} P_r$
- Goal of learning: estimate a single model $f(\mathbf{x}, w^*)$ minimizing prediction risk (similar to inductive learning) $R(w) = \int L(y, f(\mathbf{x}, w)) dP(\mathbf{x}, y)$

Problem setting for MTL

- Assume binary classification problem
- Training data ~ a union of *t* related groups(tasks) Each group *r* has n_r *i.i.d.* samples (\mathbf{x}_i^r, y_i^r) $i = 1, 2, ..., n_r$ r = 1, 2, ..., t

generated from a joint distribution $P_r(\mathbf{x}, y)$

- Test data: task label for test samples is known
- Goal of learning: estimate *t* models $\{f_1, f_2, ..., f_t\}$ such that the sum of expected losses for all tasks is minimized: $R(w) = \sum_{r=1}^{t} (\int L(y, f_r(\mathbf{x}, w)) dP_r(\mathbf{x}, y)$

SVM+ technology (Vapnik, 2006)

- Map the input vectors simultaneously into:
 - Decision space (standard SVM classifier)
 - Correcting space (where correcting functions model slack variables for different groups)
- Decision space/function ~ the same for all groups
- Correcting functions ~ different for each group (but correcting space may be the same)
- SVM+ optimization formulation incorporates:
 - the capacity of decision function (\mathbf{w},\mathbf{w})
 - capacity of correcting functions $(\mathbf{w}_r, \mathbf{w}_r)$ for group r
 - relative importance (weight) γ of these two capacities

SVM+ technology

Application Study (Liang and Cherkassky, 2007)

- SVM+ technology is new, and is rather complex. Single empirical comparison study: *fMRI* data
- fMRI data analysis problem (CMU data set)
 - six subjects presented with {picture or sentence}
 - fMRI data is recorded over 16 time intervals
 - need to learn binary classifier *fMRI image* \rightarrow class
- Data preprocessing (Wang et al, 2004)
 - extract 7 input features (Regions of Interest) from high–dim. fMRI image \rightarrow input vector has 16x7=112 components
- Comparison between standard SVM (data from all 6 subjects is pooled together) SVM+ method (6 groups where each group has 80 samples)

fMRI Application Study (cont'd)

- Experimental protocol: (randomly) split the data
 - 60% ~ training
 - 20% ~ validation (for tuning parameters)
 - 20% ~ test (for estimating prediction error)
- Details of methods used:
 - linear SVM classifier (single parameter C)
 - SVM_{γ} + classifier (3 parameters: linear kernel for decision space, RBF kernel for correcting space, and parameter γ)
- Comparison results (over 10 trials):
 - standard SVM ~ ave test error: 22.2 % (st. dev. 3.8%)
 - SVM_{γ} + ~ ave test error: 20.2% (st.dev. 3.1%)

OUTLINE

- Background
- Inductive learning and VC-theory
- Motivation for non-inductive approaches
- Non-inductive learning formulations
- Summary

Advantages/limitations of non-inductive settings Vapnik's Imperative Advantages+limitations of noninductive settings

- Advantages
 - makes common sense
 - follows methodological framework (VC-theory)
 - yields better generalization (but not always)
 - new directions for research
- Limitations
 - need to formalize application requirements
 - generally more complex learning formulations
 - more difficult model selection (# parameters)
 - few known empirical comparisons (to date)

Vapnik's Imperative

• Vapnik's Imperative:

asking the right question (with finite data) \rightarrow most direct learning problem formulation

- Controlling the goals of inference, in order to produce a better-posed problem
- Three types of such restrictions (Vapnik, 2006)
 - regularization (constraining function smoothness)
 - SRM puts constraints on VC-dim of approx fcts
 - choice of inference models
- Philosophical interpretation (of restrictions): Find a model that explains well available data and has large falsifiability

References

- Vapnik, V. Estimation of Dependencies Based on Empirical Data. Empirical Inference Science: Afterword of 2006, Springer, 2006
- Cherkassky, V. and F. Mulier, *Learning from Data*, second edition, Wiley, 2007
- Chapelle, O., Schölkopf, B., and A. Zien, Eds., Semi-Supervised Learning, MIT Press, 2006
- Popper, K., The Logic of Scientific Discovery (2nd ed.), New York: Harper Torch Books, 1968
- Cherkassky, V. and Y. Ma, Data complexity, margin-based learning and Popper's philosophy of inductive learning, in *Data Complexity in Pattern Recognition*, M. Basu and T. Ho, Eds, Springer, 2006
- Weston, J., Collobert, R., Sinz, F., Bottou, L. and V. Vapnik, Inference with the Universum, *Proc. ICML* 2006
- Ando, R. and Zhang, T., A Framework for learning predictive structures from multiple tasks and unlabeled data, J. of Machine Learning Research, 2005
- Evgeniou, T. and Pontil, M., Regularized multi-task learning, *Proc of 10-th Conf.* on Knowledge Discovery and Data Mining, 2004
- Wang, X., Hutchingson, R. and Mitchell, T., Training fMRI classifier to discriminate cognitive states across multiple subjects, *Proc. NIPS*, 2004
- Liang, L. and Cherkassky, V., Learning using structured data: application to fMRI data analysis, *Proc. IJCNN*, 2007