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Our field includes some of the most exciting and revolutionary
science and technology in the world today!

Biological neural networks
show how brains give rise to minds: “last great frontier”
solve the age-old mind/body problem
clarify mental disorders
new algorithms for biologically-inspired technology

Artificial neural networks
solutions to engineering and

technology problems that require increasingly
autonomous and adaptive control

and better man-machine interfaces
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To better know where we may be going, we need to know how we
got here, historically and scientifically

THIS TALK: some history
        some new computational paradigms
                  design principles

     mechanisms
          that can stimulate a lot of future research

KNOW THE PAST
TO UNDERSTAND THE FUTURE



Grossberg Plenary
                IJCNN’07 TWO ANNIVERSARIES TO CELEBRATE!

20 YEARS OF THIS NEURAL NETWORK CONFERENCE
   1987 IEEE International Conference on Neural Networks, San Diego
   1987 Neural Networks journal
   1987 INNS
   1988 INNS Annual Conference, Boston
   1989 IJCNN: INNS + IEEE, Washington, DC 

BUILT ON 6 YEARS OF CONFERENCES BEFORE THEM
          1980 - 1983 - 1985 - 1986 - 1986 - 1986

     For this history, see IJCNN’07 web site and posters
 

20 Year Celebration
http://www.ijcnn2007.org/anniversary.htm

Reflections on the founding of INNS and IJCNN
http://www.ijcnn2007.org/anniversary.htm
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I announced the formation of INNS at the end of my plenary 
talk at the 1987 IEEE ICNN meeting

I987 AND 1988 WERE EXCITING YEARS!

When I gave my plenary talk at the 1988 INNS meeting, there were
             3071 INNS members

38 countries
49 states of the USA
20% in life sciences
19% in information and computer sciences
27% in engineering sciences
2% in business
7% in other fields

This membership reflected the INNS goal to be an 
   interdisciplinary forum 

      for linking psychological, neurobiological, mathematical, 
  computational, engineering, and technological research goals

During the 14 months that I was INNS President,
      INNS grew by 200 members each month without saturation 



Grossberg Plenary
                IJCNN’07 



Grossberg Plenary
                IJCNN’07 

INNS
First
Annual
Meeting

…and
Birthday!
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A MAJOR PARADIGM SHIFT began in the late 1800’s
when great scientists such as Helmholtz, Maxwell, and Mach
worked in both psychology and physics

This shift accelerated in the 1960’s - 1980’s
     For reasons, see Grossberg (1988, Neural Networks, 1, 17)

Understanding how an individual
    adapts
    on its own
    in real time
    to a complex and changing world

AUTONOMOUS adaptation to a NON-STATIONARY world

What is this paradigm shift?

On-line adaptation to UNEXPECTED EVENTS
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Much previous science and technology discussed 
  EXTERNAL CONTROL of a STATIONARY world
     e.g., optimal control theory, quantum theory

New INTUITIVE CONCEPTS and new
        MATHEMATICAL EQUATIONS and METHODS 

were needed to make this breakthrough
These are the most confusing kinds of scientific revolutions

Understanding AUTONOMY is taking a long time…decades!

Along the way, many BRAIN METAPHORS
attracted huge interest for awhile
faded when they failed to solve the big problems

       telegraph circuit              catastrophy
       hydraulic system             spin glasse
       linear control system      back propagation network
       hologram                          Bayesian network
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NN: A MAJOR STEP FORWARD IN THE THEORY OF MEASUREMENT
FROM PAST TO FUTURE: A STILL-EVOLVING THEME

Newton, celestial mechanics, absolute space and time

Einstein, relativity theory, measurement relative to each reference frame

Heisenberg, quantum mechanics, measurement alters the measured

Brain: a universal measurement device that continually and rapidly 
changes (develops, learns) as it interacts with the world

The Problem of Self-Organization

The Problem of AUTONOMY in a NON-STATIONARY World

All concepts not consistent with full autonomy or that depend on 
stationary hypotheses are classical or neo-classical

They do not fully capture the revolutionary potential of our field
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TRENDS IN SCIENCE AND TECHNOLOGY THAT
LOOK TO NEURAL NETWORK RESEARCH

EXTERNAL
(SUPERVISED)

AUTONOMOUS
(UNSUPERVISED)

CONTROLWORLD

STATIONARY

NON-
STATIONARY
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50 YEARS OF NEURAL NETWORKS LINKING BRAIN TO BEHAVIOR

1957      I introduced a new PARADIGM  and a METHOD to
            theoretically link MIND to BRAIN

To have big conferences, you need to have a lot to talk about!

http://www.cns.bu.edu/Profiles/Grossberg/GrossbergInterests.pdf

30+ years of neural network research preceded the 1987 IEEE meeting

This method accepts that

BRAIN evolution is driven by BEHAVIORAL success
Discover the computational level that computes behavioral success

Fifty years of modeling show it is the NETWORK and SYSTEM levels

To understand brain design, start with BEHAVIORAL DATA & analyse how

individual adapts on its own in real time to a changing world
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       Art of Modeling
Design Principles

Behavioral
Data

Mathematical
Model and  Analysis

Neural
Data

Technological Applications

Brain
Predictions

Behavioral
Predictions

Embedding Principle: Repeat this cycle, leading to
increasing model realism and explanatory power
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1. Advanced brains look like they do to enable

Lesson: The Architecture is the Algorithm

Lesson: Learning and information processing
need to be studied together as part of the same
general problem

2.  Recent models show how the brain’s ability to
     DEVELOP and LEARN greatly constrain the laws of

REAL-TIME AUTONOMOUS LEARNING

ADULT INFORMATION PROCESSING
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Back to 1957 Using this method, I derived 
nonlinear neural networks as the 

natural language to explain
autonomous adaptation to a non-stationary world

A single theoretical language to unify
  Mind and Brain

Begin to solve the classical mind/body problem

Heady stuff for a 17 year old!

However!!!
Using brain models to explain psychological data was very controversial

NONLINEAR neural networks to explain ANYTHING was controversial!

25 years of rapid theory development before multiple factors led
               to widespread interest starting in the 1980’s
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1957      I derived the ADDITIVE and SHUNTING network models:

       interactions of STM (activation) and LTM (learning)

    gated steepest descent learning used in SOM and ART

dxi

dt
= !Axi + f (xk

k

" )Bkiwki + Ii

dwki

dt
= g(xk ) !wki + h(xi )( )

     How these equations were discovered is an unusual story:
          I was a Freshman at Dartmouth College taking Psychology 1
     http://www.cns.bu.edu/Profiles/Grossberg/GrossbergInterests.pdf

ADDITIVE
MODEL

This was very
controversial!

For those who complain about delayed reviews:
It took 10 years to get these results published!

Experimental support for gated steepest descent learning took 20 years longer: 
Levy, 1985; Levy, Brassel, and Moore, 1983; Levy and Desmond, 1985; 
Rauchecker and Singer, 1979; Singer, 1983
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STM EQUATION
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MODELS TO ENTHUSIASTIC NEW AUDIENCES

Known models tended to become popular in the order in
which they were historically discovered; e.g.,
Autoassociators:     Grossberg (1967-1972)

                Amari (1974)
   Cohen & Grossberg (1982, 1983)

                Hopfield (1982, 1984)

Back propagation:   Werbos (1974)
   Parker (1982)
   Rumelhart, Hinton & Williams (1986)

Competitive learning and self-organizing maps:
   Grossberg (1972-1976)
    Von der Malsburg (1973-1978)
    Kohonen (1982, 1984)

Our field needs a process to incrementally codify its history
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Two big reasons:
1. NEW PARADIGMS have been introduced over the past 50 years
that have hardly begun to realize their revolutionary potential

2. Scores of experimental PREDICTIONS took 5 - 30 years to get 
supported, and many more have yet to be tested

Why such a big lag in a world with “instant global communication”?

A new way of THINKING that has not yet been fully assimilated

A huge problem of interdisciplinary literacy

More interdisciplinary infrastructure is needed to transmit
    high-level theory in depth to students and researchers

IJCNN can make a difference! 
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           cf., current popularity of Bayesian models

The Unit of STM is a SPATIAL PATTERN

The Unit of LTM is a SPATIAL PATTERN

             The network tries to learn
          SYNCHRONOUS

activities of spatially distributed patterns

COMPUTING WITH PATTERNS
 Individual pixels are meaningless

Patterns embody CONTEXT as well as FEATURES

1965 -1976: A series of theorems show
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A link between cells, patterns, normalization, and synchrony

 WHAT IS A CELL?

These connections are still not often discussed together

It contains a finite number of active and inactive sites
                  Infinity does not exist in biology!

NOISE-SATURATION DILEMMA (1968-1973)

How are feature patterns processed 
in noisy cells with finitely many sites

without being contaminated by either noise or saturation?

Synchrony is still a hot topic today: Wolf Singer’s plenary talk
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Total NUMBER and SIZE of inputs to each cell can vary wildly
through time.

How do cells maintain their SENSITIVITY to input PATTERNS
whose overall SIZE changes wildly through time?

INPUT SOURCES

INPUT SOURCES
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COMPUTING IN A BOUNDED ACTIVITY DOMAIN

ViV1

I1… Ii… In
B excitable sites

xi(t) excited sites (activity, potential)

B-xi(t) unexcited sites

Thought experiment

x1

B-xi

xi xnVn

B-xnB-x1
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SOLUTION: SHUNT + COMPETITION

          BOUNDED ACTIVITIES

NOISE-SATURATION DILEMMA
Grossberg, 1968-1973

If activities xi are sensitive to SMALL inputs, then why don’t they 
SATURATE to large inputs?

If xi are sensitive to LARGE inputs, then why don’t small inputs get 
lost in system NOISE?

Join SHUNTING or MEMBRANE EQUATION dynamics
to ON-CENTER OFF-SURROUND anatomy

Multiple
input sources

xi

xn

x1
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INCLUDES THE ADDITIVE MODEL

MASS ACTION, MEMBRANE EQUATIONS
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Cells, patterns, normalization, and synchrony

A shunting on-center off-surround network
SELF-NORMALIZES

its activities in response to a spatial pattern

It tracks input RATIOS

It computes “real-time probability distribution”

It processes the SYNCHRONOUS part of the distributed pattern

The brain carries out a kind of real-time probability theory and
hypothesis testing that leads to

 SELF-ORGANIZATION in NON-STATIONARY environments

This competence goes beyond classical probabilistic concepts
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Compute RATIOS of reflected light
       Reflectance processing

θi

Contrast Normalization
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CONSERVE A TOTAL QUANTITY

Total Activity Normalization

LUCE     Ratio scales in choice behavior
ZEILER  Adaptation level theory
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FAST: Activation, or short-term memory

SLOW: Learning, or long-term memory
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MEDIUM: Habituation, or medium-term memory

Chemical transmitters control UNBIASED transduction
between cells as they habituate to sustained inputs

Grossberg, PNAS 1967+

Enables  INTRACELLULAR ratio processing and adaptation
     antagonistic REBOUNDS for reset & error correction
     INVERTED U properties to tune network sensitivity

Recently called DEPRESSING SYNAPSES…a hot topic again!
Visual Cortex: Abbott et al. (1997)

Somatosensory Cortex: Markram & Tsodyks (1997)

Vision, speech, cognition, emotion, mental disorders,…

 Another 30 year delay…shows power of the modeling method
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   DO THESE EQUATIONS JUST GO ON AND ON?

Is the brain just a BAG OF TRICKS?

V.S. Ramachandran

NO!
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A small number of EQUATIONS
e.g., shunting activation dynamics (STM)
        habituative transmitter gates (MTM)
        activity-gated learning (LTM)

Specialized combinations
of modules, using a few
basic equations, are
assembled in
architectures that solve
modal problems

A larger number of MODULES
e.g., on-center off-surround nets
        resonant matching nets
        opponent processing nets
        spectral timing nets
        boundary completion nets
        filling-in nets…

A still larger number of MODAL ARCHITECTURES
e.g. vision
       audition
       smell
       touch
       cognition
       emotion…
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WHAT PRINCIPLES DETERMINE HOW
MODAL ARCHITECTURES ARE DESIGNED?
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Models that link detailed BRAIN CIRCUITS to the
ADAPTIVE BEHAVIORS that they control

INDEPENDENT MODULES 
Computer Metaphor

COMPLEMENTARY COMPUTING
What is the nature of brain specialization?

Describe NEW PARADIGMS for brain computing

             LAMINAR COMPUTING
Why are all neocortical circuits laminar?

How do laminar circuits give rise to biological intelligence?

 Mind/Body Problem
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New principles of
UNCERTAINTY and COMPLEMENTARITY

Multiple Parallel Processing Streams Exist in the Brain

UNCERTAINTY PRINCIPLES operate at individual levels
Hierarchical interactions resolve uncertainty

Each stream computes COMPLEMENTARY properties
Parallel interactions overcome complementary weaknesses

HIERARCHICAL INTRASTREAM INTERACTIONS

PARALLEL INTERSTREAM INTERACTIONS

ADAPTIVE BEHAVIOR = EMERGENT PROPERTIES

COMPLEMENTARY COMPUTING
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Analogies:
Lock and key, puzzles pieces fitting together

        

Computing one set of properties at a processing
stage prevents that stage from computing a

complementary set of properties

       Interactions between streams overcomes their
complementary weaknesses and support

intelligent and creative behaviors

Complementary parallel processing streams
          are BALANCED against one another

Not just one learning law!
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Visual Boundary Visual Surface
Interbob Stream V1-V4 Blob Stream V1-V4

Visual Boundary Visual Motion
Interbob Stream V1-V4 Magno Stream V1-MT

WHAT learning/ WHERE learning/
Matching Matching
Inferotemporal and Parietal and
Prefrontal areas Prefrontal areas

Object Tracking Optic Flow Navigation
MT Interbands and MSTv MT Bands and MSTd

Motor Target Position Volitional Speed
Motor and Parietal Cortex Basal Ganglia



VISUAL BOUNDARIES OR GROUPINGS
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VISUAL BOUNDARY AND SURFACE
 COMPUTATIONS ARE COMPLEMENTARY

oriented
inward
insensitive to
   direction-of-contrast

unoriented
outward
sensitive to
   direction-of-contrast

BOUNDARY
COMPLETION

SURFACE 
FILLING-IN

Neon color spreading

Grossberg (1984)
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VISUAL BOUNDARY AND SURFACE
 COMPUTATIONS ARE COMPLEMENTARY

oriented
inward
insensitive to
   direction-of-contrast

unoriented
outward
sensitive to
   direction-of-contrast

BOUNDARY
COMPLETION

SURFACE 
FILLING-IN

Neon color spreading
All Boundaries
Are
Invisible!
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SEEING
an object

Epstein, Gregory, Helmholtz, Kanizsa, Kellman, Michotte,…

See
Recognize

KNOWING
what it is

vs.

SEEING vs. RECOGNIZING

Do not see
Recognize

Ehrenstein Figure Offset Grating

Some
boundaries
are
invisible,
or amodal



ALL BOUNDARIES ARE INVISIBLE!
Within the Boundary System

Grossberg (1984)

WHY? To recognize object boundaries in front of
textured backgrounds
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IF BOUNDARIES ARE INVISIBLE, HOW DO WE SEE?

     Ehrenstein (1941)         Varin (1971)  

Neon color
spreading

Filling-In of Surface Color

Boundaries define the compartments
within which lightness and color spread
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Craik-O’Brien-Cornsweet Effect

Todorovic, 1987é

percept

stimulus

e.g.  COCE

percept

stimulus

Grossberg (1984)
Todorovic (1987)

Boundary completion
defines
filling-in compartments

Filling-in determines
what we see
in each compartment
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BOUNDARY AND SURFACE CORTICAL STREAMS

V1 4B

V2 Thick

MT

V3

Parietal
 Areas

V2

V1

InterstripeV2Thin

V1 InterblobBlob

V4

Inferotemporal
        Areas

    WHAT                          WHERE

 LGN Parvo   LGN Magno

Retina DeYoe and van Essen (1988)

Boundaries
   interblob stream

Surfaces
   blob stream
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DO THESE IDEAS WORK ON HARD PROBLEMS?

Mingolla, Ross, and Grossberg (1999)

input feature

boundary filling-in

Synthetic aperture radar

signal: 5 orders of magnitude
of power In radar return

multiplicative noise

sparse high-intensity pixels

Application:
Image Enhancement

Cf. Impressionist paintings
Monet

Grossberg Plenary
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LIGHT ADAPTATION

Ten orders of magnitude of daily variations of ambient illumination
Martin (1983)

INPUTINPUT MODEL SIMULATIONMODEL SIMULATION

Grossberg and Hong (2006)

Habituative transmitters + shunting on-center off-surround nets 
+ boundaries + surfaces
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    Parallel and hierarchical interactions within
       PAIRS OF

COMPLEMENTARY CORTICAL STREAMS
          are needed to compute

    COMPLETE INFORMATION
          about a changing world

Clarifies why understanding how brains work is so difficult
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It supports the highest levels of
biological intelligence in all modalities

VISION, SPEECH, COGNITION, ACTION

Why does the cortex have LAYERS?

HOW DOES THE CEREBRAL CORTEX WORK?

How does LAMINAR COMPUTING
give rise to biological intelligence?

New modeling paradigm: show how variations of the same cortical
design carry out all higher intelligent processes

 Today, illustrate this with 2 examples:

      VISION: unify perceptual learning, grouping, and attention;
       also 3D vision and figure-ground perception (spatial)

COGNITION: unify working memory and sequence learning (temporal)

Ramon y Cajal
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SHARED LAMINAR DESIGN AND CONNECTIVITY ACROSS
MULTIPLE AREAS OF GRANULAR NEOCORTEX

Feedforward
Superficial layers in one area to
layers 4 and 6 of the next

Feedback
Deep layers in one area to mainly
outside layer 4 of another

Van Essen et al

Posterior
Parietal
Cortex (PPC)

Ps

Lateral
Prefrontal
Cortex 
(LPFC)

As

Cs

Ls

IPL

SPL

Parietal 
Pathway
“where”

IPS

Sts

AIT

CIT

PIT

Inferior Temporal
Cortex (IT)

Temporal
Pathway
“what”

Can this known anatomical
similarity be elaborated to
dynamically explain very
different behaviors?
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VISUAL LAMINAR MODEL: 3D LAMINART

CORTICAL AREAS V1 AND V2

Deep layers (4-6)
Item Storage
Normalization
Contrast enhancement

ORIENTED FILTERING of image
contrasts

Superficial layers (2/3)
Grouping across processing channels

BINOCULAR MATCHING and
PERCEPTUAL GROUPING of oriented
image features 

V1 4

LGN
6

2/3

V2
4

6

2/3
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COGNITIVE LAMINAR MODEL: LIST PARSE
LATERAL PREFRONTAL CORTEX

Deep layers (4-6)
Item storage
Normalization
Contrast enhancement

WORKING MEMORY
for short-term storage of
event sequences

Superficial layers (2/3)
Grouping across processing channels

SEQUENCE CHUNKING NETWORK
for long-term coding of
familiar event sequences
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Posterior
Parietal
Cortex (PPC)

Ps

Lateral
Prefrontal
Cortex 
(LPFC)

As

Cs

Ls

IPL

SPL

Parietal 
Pathway
“where”

IPS

Sts

AIT

CIT

PIT

Inferior Temporal
Cortex (IT)

Temporal
Pathway
“what”

TWO ENDS OF THE CORTICAL HIERARCHY

COGNITION

VISION
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Object plans 

and working 

memory

Spatial plans 

and working 

memory

Spatially invariant 

object recognition and 

attention

Spatial

attention and 

tracking

3-D filling-in of 

binocular 

surfaces and 

figure -ground 

perception

Predictive 

target 

tracking and 

background 

suppression

Optic flow 

navigation 

and image 

stabilization

Depth-

selective 

capture and 

filling-in of 

monocular  

surfaces

3-D boundary

completion 

and 

separation of 

occluding

and occluded 

boundaries

Enhancement of

motion direction

and feature

tracking signals

Monocular

double -

opponent

processing

Stereopsis Motion 

detection

Photodetection and discount illuminant

IT PPC

V4 MST

V2
V2

MT

V1

Boundary -

surface 

consistency

Formotion

binding

Retina 

and LGN

PFC PFC

WHAT STREAM WHERE STREAM

Object plans 

and working 

memory

Spatial plans 

and working 

memory

Spatially invariant 

object recognition and 

attention

Spatial

attention and 

tracking

3-D filling-in of 

binocular 

surfaces and 

figure -ground 

perception

Predictive 

target 

tracking and 

background 

suppression

Optic flow 

navigation 

and image 

stabilization

Depth-

selective 

capture and 

filling-in of 

monocular  

surfaces

3-D boundary

completion 

and 

separation of 

occluding

and occluded 

boundaries

Enhancement of

motion direction

and feature

tracking signals

Monocular

double -

opponent

processing

Stereopsis Motion 

detection

Photodetection and discount illuminant

IT PPC

V4 MST

V2
V2

MT

V1

Boundary -

surface 

consistency

Formotion

binding

Retina 

and LGN

PFC PFC

WHAT STREAM WHERE STREAM

We’ve come a long way, baby…
CELEST projects towards a theory of visual intelligence

BOTTOM-UP
TOP-DOWN
HORIZONTAL
interactions
everywhere to
overcome
COMPLEMENTARY
WEAKNESSES

Not independent
modules

Different projects
study different
combinations of
processes

Together they put
much more
conceptual
pressure on the
design of each
process than any
single project
could
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A KEY RESEARCH GOAL

Develop a unified theory of how laminar neocortical circuits
are specialized for different types of intelligence

Show how these cortical circuits learn from different
environments

A potentially huge technological impact:

A self-organizing VLSI chip set for multiple
intelligent tasks
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2. How does visual cortex GROUP distributed information into
emergent object representations? 

3. How does top-down ATTENTION bias visual processing to
selectively process interesting data?

1. How does visual cortex stably  DEVELOP and LEARN to
optimize its structure to process different environments?

Breakthrough: 
In laminar neocortex, this is really one problem, not three:  
show how 1 implies 2 and 3!

HOW DOES THE CEREBRAL CORTEX WORK?

e.g., Grossberg et al. (1997, TINS), Grossberg (2003, Beh&Cog Neurosci Reviews)

VISION
Consider 3 basic problems:
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WHAT DOES LAMINAR COMPUTING ACHIEVE?

1. Self-stabilizing
           development and learning
 
2. Seamless fusion of

pre-attentive automatic
bottom-up processing

    and
attentive task-selective
top-down processing

3. ANALOG COHERENCE: Solution of
BINDING PROBLEM  for perceptual grouping
without a loss of analog sensitivity

Even the earliest visual cortical stages carry out 
active adaptive information processing: 

LEARNING, GROUPING, ATTENTION

2/3

4

6
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1. FEEDFORWARD AND FEEDBACK
Fast feedforward processing when
data are unambiguous

e.g., Thorpe et al
Slower feedback chooses among
ambiguous alternatives:
       self-normalizing competition
      “real-time probability theory”

2. ANALOG AND DIGITAL
ANALOG COHERENCE combines the
stability of digital with the sensitivity of analog

A self-organizing system that trades
certainty against speed

3. PRE-ATTENTIVE AND ATTENTIVE LEARNING

“A pre-attentive grouping is its own ‘attentional’ prime”

Goes beyond Bayesian models!

Reconciles the differences of (e.g.) Helmholtz and Kanizsa



Grossberg Plenary
                IJCNN’07 

2. How does visual cortex GROUP distributed information into
emergent object representations?

3. How does top-down ATTENTION bias visual processing to
selectively process interesting data?

1. How does visual cortex stably  DEVELOP and LEARN to
optimize its structure to process different environments?

HOW DOES THE CEREBRAL CORTEX WORK?
VISION

 Started with 3 basic problems:

What is the relationship between GROUPING and ATTENTION?

I will discuss circuits, but the work always starts with psychological data



VISUAL BOUNDARIES OR GROUPINGS
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 Long-range
 horizontal excitation links

collinear, coaxial receptive fields
 Gilbert & Wiesel, 1989
 Bosking et al., 1997
 Schmidt et al, 1997

 Short-range
 disynaptic inhibition of target

pyramidal via pool of
interneurons
 Hirsch & Gilbert, 1991

GROUPING STARTS  IN  LAYER 2/3

LGN

6

4

2/3

Unambiguous groupings can form and
generate feedforward outputs quickly

Thorpe et al, 1996 
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Input on just one side

ONE-AGAINST-ONE:
Balanced Excitation and Inhibition

Cell not excited

1984 PREDICTION:
BIPOLE  PROPERTY CONTROLS PERCEPTUAL GROUPING

Grossberg, 1984
Grossberg & Mingolla, 1985
Laminar: Grossberg, Mingolla & Ross, 1997
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BIPOLE  PROPERTY CONTROLS PERCEPTUAL GROUPING

Collinear input on both sides

+-
-+

Excitatory inputs summate

Inhibitory inputs normalize

TWO-AGAINST-ONE

Cell is excited

Shunting inhibition!

vs.



BIPOLES: FIRST NEUROPHYSIOLOGICAL
EVIDENCE (V2)

Stimulus:

Probe location:

Cells in V2

Response?

YES

NO

NO

YES

NO

YES

Evidence for receptive field:

(more
 contrast)

Peterhans and
von der Heydt, 1988

von der Heydt, 
Peterhans, and 
Baumgartner, 1984

Grossberg Plenary
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KAPADIA, ITO, GILBERT & WESTHEIMER (1995)

Psychophysics Neurophysiology
V1



ANATOMY: HORIZONTAL CONNECTIONS (V1)

Bosking, et al., 1997

tree shrew

Grossberg Plenary
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BIPOLES THROUGH THE AGES

Grossberg and Mingolla, 1985 Field, Hayes, and Hess, 1993

Heitger and von der Heydt, 1993 Williams and Jacobs, 1997

Cf. “relatability”  geometric constraints on which contours
      get to group with which Kellman & Shipley, 1991
      Also, Ullman, Zucker, Mumford, Guy & Medione “tensor voting”

“association field”

Grossberg Plenary
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FOLDED  FEEDBACK
Layer 2/3 groupings feed back into

LGN

6

4

2/3

Activities of conflicting groupings are reduced by self-normalizing
inhibition, slowing processing; intracortical feedback selects and
contrast-enhances the winning grouping, speeding processing

Inputs to weaker groupings
suppressed by off-surround
Interlaminar feedback
creates functional columns

Can also go via layer 5
Blasdel et al., 1985
Kisvarday et al., 1989

Strongest grouping
enhanced by its on-center

Direct layer 2/3-to-6 path

6-to-4 on-center off-surround:
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DIRECT  BOTTOM-UP ACTIVATION  OF  LAYER  4

Strong bottom-up
LGN input to layer 4

Stratford et al. (1996)
Chung & Ferster (1998)

LGN

V1
layer 4

(Many details omitted!)
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LGN

6

4  LGN projects to layers 6 and 4

 Layer 6 excites spiny stellates
in column above it

 Medium-range connections
onto inhibitory interneurons

 6-to-4 path acts as
 on-center off-surround

 Grieve & Sillito, 1991, 1995
Ahmed et al., 1994, 1997

LAYER  6-TO-4  ON-CENTER  OFF-SURROUND
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Together, direct LGN-to-4
path and 6-to-4 on-center
off-surround provide
contrast normalization

LGN

6

4

BOTTOM-UP  CONTRAST  NORMALIZATION

Douglas et al., 1995
Shapley et al., 2004

Heeger, 1992

Grossberg, 1968, 1973

if cells obey shunting or
membrane equation
dynamics

Sperling and Sondhi, 1968
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• On-center 6-to-4 excitation is
inhibited down to being
modulatory

• (priming, subthreshold)
 Stratford et. al, 1996
 Callaway, 1998

LGN

6

4

Predictions:

Test modulatory property directly

Plays key role in stable grouping,
development and learning

On-center 6-to-4 excitation
cannot activate layer 4 on its
own

ART MATCHING RULE!

Clarifies need for direct path



Grossberg Plenary
                IJCNN’07 

BOTTOM-UP FILTERS AND INTRACORTICAL GROUPING
FEEDBACK USE THE SAME 6-TO-4 DECISION CIRCUIT

LGN

6

4

2/3

TOP-DOWN INTERCORTICAL ATTENTION ALSO USES
THE SAME 6-TO-4 DECISION CIRCUIT!

Competitive
Decision
Circuit

modulatory on-center
off-surround 
network
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TOP-DOWN ATTENTION AND FOLDED  FEEDBACK

 Attentional signals also feed back
 into 6-to-4 on-center off-surround

 1-to-5-to-6 feedback path
 Macaque: Lund & Boothe, 1975
 Cat: Gilbert & Wiesel, 1979

 V2-to-V1 feedback is on-center

5

1
1
4

6

LGN

V2  6

5

ART MATCHING RULE!

off-surround and affects layer 6
of V1 the most

Bullier et al., 1996
Sandell & Schiller, 1982

 Attended stimuli enhanced
 Ignored stimuli suppressed

This circuit supports the predicted
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ART: LINK BETWEEN COMPETITION AND ATTENTION

Reynolds, J., Nicholas, J., Chelazzi, L., & Desimone, R. (1995)

Reynolds, J., Chelazzi, L., & Desimone, R. (1999)
Competitive mechanisms subserve attention in Macaque 
areas V2 and V4
Journal of Neuroscience, 19, 1736 - 1753

Spatial attention protects macaque V2 and V4 cells from the
influence of non-attended stimuli
Society for Neuroscience Abstracts, 693.1, page 356

Neurophysiological Data

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., and Rosen, D.B. (1992) 
Fuzzy ARTMAP: A neural network architecture for incremental supervised learning
 of analog multidimensional maps
 IEEE Transactions on Neural Networks, 3, 698-713

Carpenter, G.A., Grossberg, S., and Reynolds, J.H. (1991) 
ARTMAP: Supervised real-time learning and classification of nonstationary data 
by a self-organizing neural network 
Neural Networks, 4, 565-588 

*******************************************************************************
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ART Matching Rule
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Data plots adapted with permission from Reynolds et al. 
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Grossberg and Raizada (2000, Vision Research)
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ROELFSEMA  ET  AL.  (1998):  MACAQUE  V1

Fixation
(300ms)

Stimulus
(600ms)

Saccade

Target curve

DistractorRF

Crossed-curve condition:
Attention flows across junction
between smoothly connected
curve segments
(Good Continuation)
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DATA SIMULATION

Attention directed only to far end of curve

Propagates along active layer 2/3 grouping
to distal neurons

Target
Distractor

Grossberg and Raizada (2000, Vision Research)

SIMULATION OF ROELFSEMA  ET  AL.  (1998)
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EXPLANATION: GROUPING  AND  ATTENTION  SHARE
THE  SAME  MODULATORY DECISION  CIRCUIT

Intercortical attention

Intracortical feedback
from groupings

2/3

4

6

BOTH act via a MODULATORY
ON-CENTER OFF-SURROUND
decision circuit
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HOW ATTENTION CAN SELECT AN ENTIRE OBJECT

“OBJECT ATTENTION”
NOT the only kind of object-based attention!

Boundary-mediated attention

Surface-mediated attention (Mingolla talk)

Prototype-mediated attention (ART)

…the model simulates lots of other
behavioral and brain data about attention
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Stimulus
Variable -contrast grating + distractors

Task
Discriminate orientation of grating

Conditions
Stimulus either in normal visual quadrant, or 
quadrant with lesioned attentional regions 
(V4, TEO)

Result
Attention needed only for low -contrast gratings

DE  WEERD  ET  AL. (1999):
ATTENTIONAL FEEDBACK  IS  NECESSARY

TO  SELECT  WEAK  TARGETS
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TARGET: Variable-contrast Gabor in neuron’s Classical RF
FLANKERS: Constant-contrast collinear Gabors outside RF

POLAT  ET  AL.  (1998):  CAT  AREA  17  (V1) 
CONTRAST-SENSITIVE  GROUPING

Collinear flankers ENHANCE response to near-threshold target

Flankers SUPPRESS response to high contrast target
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3D LAMINART: 3D VISION & FIGURE-GROUND PERCEPTION

  V2 PALE STRIPE

2/3A
3B

4

V1

V2

V1
 B

LO
B

2/3

4

V2
 T

H
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 S
TR
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V4

V1
 B

LO
B

V2
 T

H
IN

 S
TR

IP
E

V1  INTERBLOB

L EYE R EYE

DF*

LGN

Boundary stream
(green)

Surface stream
(red)

ON-CENTER, OFF-SURROUND

  INTER-STREAM INTERACTION

COMPLEX CELL

INHIBITORY CELL

SIMPLE CELL

EXCITATION

INHIBITION

*DF: Disparity Filter

OFF-CENTER, ON-SURROUND

Grossberg, Cao, Fang, Howe, Swaminathan, 2003+  
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LAMINART = LAMINAR ART
ART = ADAPTIVE RESONANCE THEORY

WHY IS THE MODEL CALLED LAMINART?

 Grossberg (1976, 1980), Carpenter and Grossberg (1987),…

ART predicted in the 1970’s-1980’s that
attention is realized by a top-down
modulatory on-center off-surround network!

ART proposes how
stable development and learning occur throughout life

using top-down attention

Attention matching helps to dynamically stabilize learning

ART MATCHING RULE
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cortical circuit embodies the ART Matching Rule
Grossberg (1999, Spatial Vision)

INTERcortical
attention

INTRAcortical feedback
from groupings

Attention acts via a
TOP-DOWN
MODULATORY ON-CENTER
OFF-SURROUND NETWORK

INTERcortical loop
attentively stabilizes learning
INTRAcortical loop
pre-attentively stabilizes learning

2/3

4

6

Cf., Watanabe et al
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ART mechanistically predicts why we are

symbol forming

intentional

attentional

learning

beings

CREATIVE DISCOVERY OF CAUSAL RELATIONS
IN A CHANGING WORLD
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Stability-Plasticity Dilemma

Grossberg (1976)

How can learning continue into adulthood without
causing catastrophic forgetting?

How can we LEARN quickly without being forced to
FORGET just as quickly?

A unifying theme:

ART

e.g., why learning your faces does not force me to forget
faces of my family and friends!
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Boeing parts design retrieval; used in Boeing 777 design
satellite remote sensing
radar identification
robot sensory-motor control and navigation
machine vision
3D object and face recognition
Macintosh operating system software
automatic target recognition
ECG wave recognition
protein secondary structure identification
character classification
musical analysis
air quality monitoring and weather prediction
medical imaging and database analysis
multi-sensor chemical analysis
strength prediction for concrete mixes
signature verification
decision making and intelligent agents
machine condition monitoring and failure forecasting
chemical analysis
electromagnetic and digital circuit design…

Grossberg Plenary
                IJCNN’07
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BOTTOM-UP ACTIVATION
by itself can activate target cells

(automatic activation)

TOP-DOWN EXPECTATIONS
learn prototypes that

select consistent bottom-up signals
(hypothesis testing)

suppress inconsistent bottom-up 
signals (attentional focusing)

cannot by themselves fully activate 
target cells (modulation, priming)

ART MATCHING AND RESONANCE RULES
 help to solve the Stability-Plasticity Dilemma
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Top-down
expectations
(LTM)

STM after
top-down
matching

Categories (STM)

Bottom-up adaptive
filter (LTM)

Distributed feature
pattern (STM)

STM before
top-down
matching

EXPECTATIONS FOCUS ATTENTION

competition

Attention!
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COMPETITIVE LEARNING AND SELF-ORGANIZING MAPS

Categories
Compressed STM representation  
        competition

Adaptive Filter T=ZS

Features
Distributed STM representation

Input Patterns

T 
Z 
S

Grossberg, 1972, 1976; von der Malsburg, 1973; Kohonen, 1984

LTM traces
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If a sequence of feature patterns does not form too many
clusters relative to the number of category coding cells, then
learning is

stable
self-normalizing
tracks input statistics
Bayesian

Grossberg (1976)

Recent learning can force unselective forgetting 
or catastrophic forgetting of older learning

In general, learning is unstable in response to a dense series 
of inputs whose statistics change through time:
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FROM COMPETITIVE LEARNING AND SELF-ORGANIZING
MAPS TO ADAPTIVE RESONANCE THEORY

ART was introduced to dynamically stabilize recognition
learning using top-down EXPECTATIONS and ATTENTION

Cf. experiments of C. Gilbert, E. Kandel, M. Merzenich, etc.

Categories(STM)

BU adaptive
filter (LTM)

Distributed
feature pattern
(STM)

TD learned
expectations
 (LTM)

HOW do expectations focus attention and stabilize learning?
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Volition

+
+ +

+

__ _ _ _

+

Stabilizes Learning

Grossberg (1976-1980)
Carpenter & Grossberg (1987)
      and many later articles

Categories

Features_

Top-down, modulatory on-center, off-surround network
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Grossberg (1999, Spatial Vision)

INTERcortical
attention

INTRAcortical feedback
from groupings

Attention acts via a
TOP-DOWN
MODULATORY ON-CENTER
OFF-SURROUND NETWORK

INTERcortical loop
attentively stabilizes learning
INTRAcortical loop
pre-attentively stabilizes learning

2/3

4

6

Cf., Watanabe et al
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NOT ALL BRAIN MODELS ARE CREATED EQUAL
All the major ART predictions have received

experimental confirmation

ART predicted a link between

TOP-DOWN EXPECTATION

COOPERATIVE-COMPETITIVE MATCHING

ATTENTION

COMPETITIVE MATCHING AND ATTENTION
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ALL THE MAJOR ART PREDICTIONS

ATTENTION HAS AN ON-CENTER OFF-SURROUND
                          Bullier, Jupe, James, and Girard, 1996

Caputo and Guerra, 1998
Downing, 1988
Mounts, 2000
Reynolds, Chelazzi, and Desimone, 1999
Smith, Singh, and Greenlee, 2000
Somers, Dale, Seiffert, and Tootell, 1999
Sillito, Jones, Gerstein, and West, 1994
Steinman, Steinman, and Lehmkuhne, 1995
Vanduffell, Tootell, and Orban, 2000

“BIASED COMPETITION”
Desimone, 1998
Kastner and Ungerleider, 2001
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ALL THE MAJOR ART PREDICTIONS

ATTENTION CAN FACILITATE MATCHED
 BOTTOM-UP SIGNALS

Hupe, James, Girard, and Bullier,  1997
Luck, Chellazi, Hillyard, and Desimone, 1997
Roelfsema, Lamme, and Spekreijse, 1998
Sillito, Jones, Gerstein, and West, 1994
     and many more…

         INCONSISTENT WITH MODELS WHERE TOP-DOWN
MATCH IS SUPPRESSIVE

Mumford, 1992
Rao and Ballard, 1999

Bayesian Explaining Away
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Chelazzi, Duncan, Miller, and Desimone, 1998
Priming and Competition
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ADAPTIVE RESONANCE

Attended featured clusters reactivate bottom-up pathways

Activated categories reactivate their top-down pathways

Categories

Feature Patterns

STM

STM

LTM
LTM

Resonance synchronizes
         amplifies
         prolongs system response

Resonance triggers learning in bottom-up and top-down
adaptive weights: adaptive resonance!
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ALL CONSCIOUS STATES ARE RESONANT STATES
Grossberg, 1976

   Growing neurophysiological support during the past several years for
the predicted connection between:

Consciousness
Learning
Expectation 
Attention
Resonance
Synchrony

e.g., experiments by J. Bullier, R. Desimone, C. Gilbert, V. Lamme, 
J. Reynolds, P. Roelfsema, W. Singer, N. Suga, etc.
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SUPPORT FOR ART CLEARS PREDICTIONS

LINK BETWEEN ATTENTION AND LEARNING

                   VISUAL LEARNING

                Ahissar and Hochstein, 1993

                      AUDITORY LEARNING

                Gao and Suga, 1998

        SOMATOSENSORY LEARNING

                Krupa, Ghazanfar, and Nicolelis, 1999
                Parker and Dostrovsky, 1999
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SUPPORT FOR ART CLEARS PREDICTIONS

LINK BETWEEN ATTENTION AND SYNCHRONY

                      Engel, Fries, and Singer, 2001

Fries, Reynolds, Rorie, and Desimone, 2001

Pollen, 1999

A match can support learning that refines a learned
prototype

How are new categories discovered when there is a big
enough mismatch?
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Interactions between COMPLEMENTARY SYSTEMS

Attentional System Orienting System

Temporal cortex
Prefrontal cortex

 Nonspecific thalamus
Hippocampal system

Expected Events

Familiar Events

Resonance

Attention

Learning

Recognition

Unexpected Events

Unfamiliar Events

Reset

Memory Search

Hypothesis Testing
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ρ
_ _+

+ +

+ +

F2

F1

STM

STM

INPUT

Reset
and
Search

Matching
criterion:
vigilance
parameter

Nonspecific
inhibitory
gain control

ATTENTIONAL
SYSTEM

ORIENTING
SYSTEM

ART 1 MODEL

Carpenter and Grossberg (1987)
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VIGILANCE
How big a
mismatch
causes reset?

Mismatch
reset

Choose
category, or
symbolic
representation

Test hypothesis

Choose
another
category

ART HYPOTHESIS TESTING AND LEARNING CYCLE
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ERP SUPPORT FOR HYPOTHESIS TESTING CYCLE

ART predicted correlated sequences of P120-N200-P300

Event Related Potentials during oddball learning

P120 - mismatch; N200 - arousal/novelty; P300 - STM reset

Confirmed in: Banquet and Grossberg (1987)

P120

N200

P300

Event-Related Potentials: Human Scalp Potentials

mismatch arousal

STM reset
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NEUROPHYSIOLOGICAL SUPPORT FOR
MATCHING AND RESET IN INFEROTEMPORAL

CORTEX

Cells in inferotemporal cortex learn to categorize
visual events in the world

These cells are actively reset during working
memory tasks

There is an “active matching process that was
reset between trials.”

Miller, Li, Desimone (1991)
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A dynamic cycle of
RESONANCE

and
RESET

COGNITIVE LEARNING CYCLE

As inputs are learned, search automatically disengages and
direct access to globally best-matching category occurs
       Mathematical proof in: Carpenter & Grossberg, CVGIP, 1987

Explains how we can quickly recognize familiar
objects and events even if, as we get older, we store
enormous numbers of memories
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laminar cortical and thalamic circuits?
YES!

MAIN QUESTIONS:
How are multiple levels of brain organization

spikes
local field potentials
inter-areal synchronous oscillations 
spike-timing dependent plasticity

coordinated to
regulate stable category learning and attention

during cognitive information processing via
laminar cortical circuits
specific and nonspecific thalamic nuclei?

Grossberg and Versace (2006+)

SMART model
Synchronous Matching ART
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BU 
INPUT

SPECIFIC
THALAMIC
NUCLEUS

THALAMIC
RETICULAR
NUCLEUS

NEOCORTICAL
LAMINAR
CIRCUIT

NONSPECIFIC 
THALAMIC
NUCLEUS

FIRST ORDER THALAMUS

NEURONS LEGEND

= excitatory

= nonspecific 
thalamic output

= excitatory 
plastic

FIRST ORDER CORTEXHIGHER ORDER CORTEX

= inhibitory

LAYER

SECOND ORDER THALAMUS

1

2/3

4

5

6I

6II

1

2/3

4

5

6I

6II
= core thalamic 

= excitatory

= inhibitory

= thalamic core

= apical dendrites

= gap
 junctions
= depletable 
transmitters

= cortico-cortical
or cortico-
thalamic
feedback

SMART: MODEL MACROCIRCUITSMART: MODEL MACROCIRCUIT

CONNECTIONS
 LEGEND

 PULVINAR
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LOTS OF ANATOMICAL DATALOTS OF ANATOMICAL DATA

Callaway (1998)Conveys layer 2/3 output to layer 6II.D2/3 A → 6II A

Callaway and Wiser (1996)Conveys layer 2/3 output to layer 5.D2/3 A → 5 A

Van Essen et al. (1986)Feedforward output from Area A to Area B.D2/3 A → 6II B

Van Essen et al. (1986)Feedforward output from Area A to Area B.D2/3 A → 4 B

Tamas et al. (1998); Grossberg and
Raizada(2003)

Normalization of inhibition.I2/3 inh. A → 2/3 inh. A

McGuire et al. (1991); Grossberg and Raizada
(2003)

Avoid outward spreading (bipole) in 2/3.D2/3 A → 2/3 inh.  A

Bosking et al. (1997); Schmidt et al. (1997);
Grossberg and Raizada (2003)

Recurrent connections (grouping) in 2/3.D2/3 A → 2/3 A

Fitzpatrick at al. (1985); Callaway and Wiser
(1996)

Feedforward driving output from 4 to 2/3.D4 A → 2/3 A

Ahmed et al. (1997); Markram et al. (2004)Normalization of inhibition in layer 4.I4 inh. A → 4 inh. A

Markram et al. (2004)Lateral inhibition in layer 4.I4 inh. A → 4 A

Markram et al. (2004)Lateral inhibition in layer 4.D4 A → 4 inh. A

Van der Werf et al. (2002)To 5 through apical dendrites in 1, participates in
the reset mechanism.

Mnonspecific thalamic A →
5 A

Kolmac and Mitrofanis (1997); Van der Werf et
al. (2002)

Inhibition of nonspecific thalamic cells,
participates in the reset mechanism.

IRE A → nonspecific
thalamic A

Landisman et al. (2002)Synchronize RE and thalamic relay cells.GJRE A (B) → RE B(A)

Jones (2002); Sohal and Huguenard (2003)Normalization of inhibition.IRE A → RE A

Cox et al. (1997); Pinault and Deschenes (1998);
Sherman and Guillery (2001)

Off-surround to primary and secondary thalamic
relay cells, synchronization of thalamic relay
cells.

IRE A → thalamic core A

Sherman and Guillery (2001); Jones (2002)Recurrent inhibition to primary and secondary
thalamic relay cells.

Dthalamic core A → RE A

Blasdel and Lund (1983) for LGN → 6; Callaway
(1998) LGN input to 6 is weak and Layer 5
projections to 6 [Note 1]

Primary thalamic relay cells prime layer 4 via the
6 → 4 modulatory circuit.

Dthalamic core A → 6I A

Blasdel and Lund (1983)Primary thalamic relay cells drive layer 4.  Dthalamic core A → 4 A
            Connections              Type                      Functional interpretation                                        References
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            Connections               Type                 Functional interpretation                                                    References

Rockland and Virga (1989); Rockland (1994);
Salin and Bullier (1995)

Intercortical feedback from 6II area B to 1 area A,
where it synapses on 2/3 excitatory and inhibitory
neurons, as well as 5 apical dendrites branching
in 1

M6II B → 2/3, 2/3 inh., 5 A

Guillery and Harting (2003); Sherman and
Guillery (2001)

Off-surround to primary thalamic relay cells
mediated by thalamic RE.

D6II A → RE A

Sillito et al. (1994); Callaway (1998);On-center to primary thalamic relay cells.M6II A → thalamic Core A

McGuire et al. (1984); Ahmed et al., (1997);
Callaway (1998)

Off-surround to 4.D6I A → 4 int. A

Stratford et al. (1996); Callaway (1998);
Grossberg and Raizada (2003)

On-center to 4. Mediated by habituative gates.M6I A → 4 A

Callaway (1998); Callaway and Wiser (1996),
class B” cells [Note 2]

Delivers feedback to the 6 → 4 circuit from higher
cortical areas, sensed at the apical dendrites of 5
branching in 1.

D5 A → 6I A

Rockland (1999); Sherman and Guillery (2001)Feedforward connections from Area A to Area B
through secondary thalamic relay neurons.

D5 A → thalamic core B

Abbreviations: inh. = inhibitory neurons; RE = reticular nucleus; A = primary (thalamic, cortical) loop; B = secondary
(thalamic, cortical) loop; D = driving excitatory connections; M = modulatory connections; I = inhibitory connections; GJ =
gap junctions; int. = inhibitory interneuron. [Note 1]: Callaway (1998) subdivides Layer 6 neurons in 3 classes: Class I:
provide feedback to 4C, receive input from LGN, and project back to LGN; Class IIa: dendrites in 6, axons from 2/3, project
back to 2/3 with modulatory connections; Class IIb: dendrites in 5, project exclusively to deep layers (5 & 6) and claustrum.
In the model, these populations are clustered in 2 classes, layer 6I and 6II, which provide feedback to thalamic relay cells
and layer 4, respectively. [Note 2]: Callaway (1998) subdivides Layer 5 neurons in 3 classes: Class A: dendrites in 5,
axons from 2/3, project back to 2/3 with modulatory connections; Class B: dendrites in 5, axons from 2/3, project laterally to
5 and PULVINAR; Class C: dendrites in 1, project to superior colliculus. In the model, these differences are ignored, and it
is assumed that the model layer 5 neuron receives input from 2/3 (Classes A and B), as well modulatory input from the
nonspecific thalamic nuclei (Class C, apical dendrites in layer 1), and provide output to 6I and second-order thalamic
nuclei. The inner, recurrent loop with 2/3 has also been ignored.

THE MODEL FUNCTIONALLY EXPLAINSTHE MODEL FUNCTIONALLY EXPLAINS
LOTS OF ANATOMICAL DATALOTS OF ANATOMICAL DATA
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5
6I

4
DENDRITIC

SPIKE

5
NONSPECIFIC

THALAMIC 
NUCLEUS

(b) Layer 5 spikes reach layer 4 via layer 6I

and inhibitory interneurons
Lund and Boothe (1975), Gilbert and Wiesel (1979)

(c) Habituative neurotransmitters in layer 6I

shift the balance of active cells in layer 4
Grossberg (1972, 1976)

6I

4

(a) Arousal causes increase in nonspecific
thalamic nuclei firing rate and layer 5
dendritic and later somatic spikes
Larkum and Zhu (2002), Williams and Stuart (1999)

DATA SIMULATION

STIMULATION APICAL DENDRITES OF
NONSPECIFIC THALAMUS

Dendritic stimulation fires layer 5

Larkum and Zhu (2002)

MISMATCH CAUSES LAYER 5 DENDRITIC SPIKES
THAT TRIGGER RESET IN DEEP LAYERS (6-4)

1
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(a) TD CORTICOTHALAMIC FEEDBACK increases SYNCHRONY  Sillito et al. (1994)

(b) MATCH
increases γ oscillations

(c) MISMATCH
increases θ, β oscillations

FB ON FB OFF FB ON FB OFF

SIMULATIONDATA



DIFFERENT AVERAGE OSCILLATION FREQUENCIES IN
SUPERFICIAL AND DEEP CORTICAL LAYERS

Superficial Recording
γ

Deep Recording
     β

Buffalo, E.A., Fries, P., and Desimone, R. (2004). Layer-specific attentional
modulation in early visual areas. Society for Neuroscience Abstract. 30, 717–6.

PREDICTION: Does this difference in
average oscillation frequencies in the
superficial and deep layers reflect layer 4
RESET dynamics?
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HOW DOES THE CEREBRAL CORTEX
WORK?

COGNITION

How do laminar cortical circuits store and learn
about sequences of events through time?

Are cognitive circuits variations on vision circuits?
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LIST PARSE MODEL
LAMINAR INTEGRATED STORAGE OF TEMPORAL

PATTERNS FOR ASSOCIATIVE RETRIEVAL, SEQUENCING AND
EXECUTION

MODEL FUNCTIONS
Working memory storage of incoming TEMPORAL series of events

as a parallel SPATIAL activation gradient

Learning of list, or event sequence, categories

Voitional performance of event sequences at variable rates

Grossberg and Pearson (2006+)

EXCITING PREDICTION: How prefrontal cortex may use a variant of
visual cortical circuits to carry out cognitive temporal functions:

         MODEL MECHANISMS
Predict how layered circuits in prefrontal and motor cortex
      accomplish this
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LIST PARSE
MACROCIRCUIT

Diagram Convention
Model Components
Modeled
Proposed Localization
Proposed Functionality

Chien, Ravizza, Fiez (2003)

Verbal
Working Memory
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LIST PARSE
CIRCUIT DIAGRAM

Connectivity
Convention

Working memory

Sequence chunks

BU Filter TD Expectation

Rehearsal and
Self-inhibition
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WORKING MEMORY MODELS:
ITEM AND ORDER, or COMPETITIVE QUEUING, models

 A Type of Temporal ART Dynamics

In 1978 this was a new paradigm when the
Atkinson and Shiffrin model was popular

Content-addressable cells code both:

ITEM information (WHAT event occurred)
          as well as

Grossberg (1978)
Houghton (1990)
Page & Norris (1998)
Farrell & Lewandowsky (2004)

ORDER information (WHEN it occurred)

What constraints govern the design of such a
working memory?

How can evolution discover a design for a
process as sophisticated as a working
memory?

I proposed an answer in a 1978 J. Math.
Psychol. article, but with no laminar
understanding: recurrent shunting on-center off-surround network
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The ability to stably categorize temporal order information
implies that working memory storage is not always veridical!
Three Cases:

Primacy Gradient

Recency Gradient

Bow

Order
of

recall

Order
of

recall

Order
of

recall

Veridical
storage

Inverted
storage

Mixed

Input

Input

Input
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Grossberg (1982) Studies of Mind and Brain, Kluwer/Reidel

Grossberg and Stone (1986) Memory and Cognition

Data of Murdock, B.B., J. Experimental Psychology, 1962, 64, 482-488
Position of word on a 40-word list

SERIAL-POSITION FUNCTION FOR FREE RECALL

RecencyPrimacy
(STM
and

LTM)

100

50

0
1 20 40
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TRANSIENT MEMORY SPAN

ANOTHER CONFIRMED PREDICTION

Call the position where the bow occurs the

  TMS ! 4 Cf., N. Cowan (2001) Magical # 4

IMMEDIATE MEMORY SPAN

  IMS ! 7 Cf., G. Miller (1956) Magical # 7

A pure STM effect

STM plus LTM readout

 IMS > TMS
Grossberg (1978) 



FARRELL AND LEWANDOWSKY (2004)
SUMMARY OF CQ PREDICTIVE POWER

Abstract: “Several competing theories of short-term memory can explain
serial recall performance at a quantitative level.  However, most theories to
date have not been applied to the accompanying pattern of response
latencies, thus ignoring a rich and highly diagnostic aspect of performance.
This article explores and tests the error latency predictions of four
alternative mechanisms for the representation of serial order.  Data from
three experiments show that latency is a negative function of transposition
displacement, such that list items that are reported too soon (ahead of their
correct serial position) are recalled more slowly than items that are reported
too late.  We show by simulation that these data rule out three of the four
representational mechanisms.  The data support the notion that serial order
is represented by a primacy gradient that is accompanied by suppression
of recalled items.”

Farrell, S. and Lewandowsky, S. (2004).  Modelling transposition latencies:
Constraints for theories of serial order memory.  Journal of Memory and
Language, 51: 115-135.

Grossberg Plenary
                IJCNN’07



Extra-cellular recording in macaque peri-principalis region during
joystick controlled copying

Averbeck, Chafee, Crowe & Georgopoulos (2002, 2003a, 2003b)

NEUROPHYSIOLOGY OF SEQUENTIAL COPYING
Strong neurophysiological support for 1978 working memory prediction
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NEUROPHYSIOLOGY OF SEQUENTIAL COPYING
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ERROR-TYPE DISTRIBUTIONS DURING
IMMEDIATE SERIAL RECALL

Six-letter visual ISR
Order errors
Transpositions of
neighboring items are the
most common

Model Explanation
Noisy activation levels
change relative order in
primacy gradient
Similar activation of
neighboring items; most
susceptible to noise

Model parameters fitted on
these data

Graph Convention
Data: Dashed Lines
Simulations: Solid Lines

Henson et al. (1996)
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BOWING OF
SERIAL POSITION CURVE

DURING IMMEDIATE SERIAL RECALL
Auditory ISR with Various List Lengths

(graphs shifted rightward)
For span and sub-span length lists:

Extended primacy, with one (or two)
item recency

Auditory presentation: Enhanced
performance for last items

LIST PARSE
End effects: First and last items half as

many neighbors
Echoic Memory: Last presented item

retained in separate store

Simulation

Cowan et al. (1999)
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LIST LENGTH EFFECTS DURING
IMMEDIATE SERIAL RECALL

Circles: Crannell and Parrish (1968)
Squares: Baddeley and Hitch (1975)
Solid Line: Simulation

Variable List Length ISR
Longer lists are more difficult to
recall

LIST PARSE
More items: Closer activation
levels and lower absolute
activity level with enough inputs
Noise is more likely to
produce order errors
Activity levels more likely to
drop below threshold
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LIMITED TEMPORAL EXTENT FOR RECALL DURING
IMMEDIATE SERIAL RECALL

Murdoch (1961)
ISR task with distracter-filled retention
intervals
(to prevent rehearsal)

Increasing Retention Interval:
Decreases Probability of
Recalling List Correctly

Load Dependence: Longer lists more
effected by delays

Performance Plateaus: Subjects reach
apparent asymptote

LIST PARSE
Increased convergence of activities
with time; loss of order information

Simulation
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TEMPORAL GROUPING AND
PRESENTATION VARIABILITY

LIST PARSE (Unique)
Temporal Grouping
Inserting an extended pause leads to
inter-group bowing
Significantly different times of
integration and activity levels across
pause; fewer interchanges

Prediction
Increasing IOIs while effectively
preventing rehearsal
Enhances performance of recency items,
weakens primacy?

Simulations

Solid: 5 STU IOI
Dashed: 10 STU
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IMMEDIATE FREE RECALL

Overt Rehearsal IFR Task with Super-span
(i.e. 20 Item) Lists
Extended recency; even more extended with
shorter ISIs
Increased probability of recall with
diminished time from last rehearsal
Early items in list rehearsed most

LIST PARSE (Unique)
For long lists:
Incoming items form recency gradient
Rehearsal (re-presentation) based upon level
of activity

Dashed: Data
Solid: Simulation
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SIMULATES MONKEY SEQUENTIAL COPYING DATA

Simulations of neural activity in the motor plan field (F) vs. time for 3, 4
and 5 item sequences
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SIMULATES MOVEMENT KINEMATICS AND THEIR
INTERNAL REPRESENTATION

VITE Trajectory Generator
Produces bell-shaped velocity
outflow signals (DG)

At start of movement, fast time-averaging
cells (A) closely track the increasing
outflow signals, slow cells (B) lag. B-A<0

Near completion of movement, fast cells
(A) closely track decreasing outflow
signals, slow cells (B) lag this decrease.
B-A>0

Top: Observed 
Movement Kinematics

Bottom: Internal Estimates of 
Velocity (B) and Acceleration (A-B)
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VISUAL LAMINAR MODEL: 3D LAMINART

CORTICAL AREAS V1 AND V2

Deep layers (4-6)
Item Storage
Normalization
Contrast enhancement

ORIENTED FILTERING of image
contrasts

Superficial layers (2/3)
Grouping across processing channels

BINOCULAR MATCHING and
PERCEPTUAL GROUPING of oriented
image features 

V1 4

LGN
6

2/3

V2
4

6

2/3
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COGNITIVE LAMINAR MODEL: LIST PARSE
LATERAL PREFRONTAL CORTEX

Deep layers (4-6)
Item storage
Normalization
Contrast enhancement

WORKING MEMORY
for short-term storage of
event sequences

Superficial layers (2/3)
Grouping across processing channels

SEQUENCE CHUNKING NETWORK
for long-term coding of
familiar event sequences
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TOWARDS A UNIFIED THEORY OF NEOCORTEX
Existence Proof:

Visual form perception: learning, grouping, attention
more spatial

Working memory and sequence learning
more temporal

They are variations on the same circuitry!

The volitional mechanism that controls
visual imagery and fantasy
is homologous to the mechanism that controls
storing a telephone number in working memory

PREDICTION:
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WE ARE PART OF A MAJOR SCIENTIFIC REVOLUTION!
      A big step forward in the physical theory of MEASUREMENT
                               Newton, Einstein, Heisenberg,…

  Fast autonomous SELF-ORGANIZATION of a Measurement System
        in a Non-Stationary World

    Not just small incremental steps based on known physical theories

              NEW PARADIGMS
                  to understand

           AUTONOMOUS ADAPTATION IN A CHANGING WORLD

                               COMPLEMENTARY COMPUTING

LAMINAR COMPUTING

Especially to those of you who are “young at heart”, I say:

JUMP ON. IT IS A GREAT RIDE!


