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Twenty Years ago

• Neural networks were a paradigm shift in data 
analysis because:

They handled higher dimensional problems than it was 
considered possible
They took advantage of nonlinear multi-layer topologies
that implemented very efficient, universal approximators.
They could be trained with a new learning algorithm called 
backpropagation
They were in many respects a metaphor for brain processing 
due to their distributed, nonlinear, dynamical nature. 

• However, they were mostly capturing the second 
order statistics of the error because of the Mean 
Square Error cost function…



Information Filtering: From Data to 
Information 

Information Filters: Given data pairs {xi,di}

Optimal Adaptive systems
Information measures

Embed information in the weights of the adaptive system
More formally, use optimization to perform Bayesian estimation

Information
Measure

Adaptive
System

Data x

Information

Output

Data d

error

f(x,w)



Information Filtering 

Deniz Erdogmus and Jose Principe

From Linear 
Adaptive Filtering 
to Nonlinear 
Information Processing

IEEE
SP MAGAZINE      

November 2006



What is Information Theoretic Learning?

ITL is a methodology to adapt linear or nonlinear systems 
using criteria based on the information descriptors of 
entropy and divergence. 

Center piece is a non-parametric estimator for entropy that:
Does not require an explicit estimation of pdf
Uses the Parzen window method which is known to be consistent 
and efficient
Estimator is smooth
Readily integrated in conventional gradient descent learning
Provides a link to Kernel learning and SVMs.
Allows an extension to random processes 



ITL is a different way of thinking about 
data quantification

Moment expansions, in particular Second Order moments are 
still today the workhorse of statistics. We automatically 
translate deep concepts (e.g. similarity, Hebb’s postulate of 
learning ) in 2nd order statistical equivalents.

ITL replaces 2nd order moments with a geometric statistical 
interpretation of data in probability spaces. 

Variance by Entropy
Correlation by Correntopy
Mean square error (MSE) by Minimum error entropy (MEE)
Distances in data space by distances in probability spaces
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Information Theoretic Learning
Entropy

Entropy quantifies the degree of uncertainty 
in a r.v. Claude Shannon defined entropy as 

Not all random variables (r.v.) are equally random! 
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Information Theoretic Learning
Renyi’s Entropy

Norm of the pdf:
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Information Theoretic Learning
Parzen windowing

Given only samples drawn from a distribution:

Convergence:
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Information Theoretic Learning 
Renyi’s Quadratic Entropy

Order-2 entropy & Gaussian kernels:
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Information Theoretic Learning 
Information Force

In adaptation, samples become information particles
that interact through information forces.

Information potential:

Information force:
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Information Theoretic Learning 
Backpropagation of Information Forces

Information forces become the 
injected error to the dual or 
adjoint network that 
determines the weight 
updates for adaptation.

Information
Forces

Adaptive
System

Adjoint
Network

Input

Desired

IT
CriterionOutput

Weight
Updates

ij

p
k

p

N

n pij w
ne

ne
J

w
J

∂
∂

∂
∂

∂
∂ )(

)(1 1
∑ ∑

= =

=



Information Theoretic Learning 
Quadratic divergence measures

Kulback-Liebler
Divergence:

Renyi’s Divergence:

Euclidean Distance:

Cauchy- Schwartz 
Distance :

Mutual Information is a special case (divergence 
between the joint and the product of marginals)
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Learning System

Y q X W,( )=
Input Signal Output Signal

X Y

Desired Signal D

Optimization
Information Measure

I Y D,( )

Information Theoretic Learning 
Unifying criterion for learning from samples



Training ADALINE sample by sample 
Stochastic information gradient (SIG)

Batch gradient for any α and any kernel:

Stochastic approximation (SIG) with M samples:

For α = 2 and Gaussian kernel

For M=1, the SIG becomes LMS equivalent

Erdogmus, Principe, Hild, IEEE Signal Processing Letters, 2003.
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Training ADALINE sample by sample 
Stochastic information gradient (SIG)

Theorem: The expected value of the stochastic information 
gradient (SIG), is the gradient of Shannon’s entropy estimated 
from the samples using Parzen windowing.

For the Gaussian kernel and M=1

The form is the same as for LMS except that entropy learning 
works with differences in samples. 

The SIG works implicitly with the L1 norm of the error. 

Erdogmus, Principe, Hild, IEEE Signal Processing Letters, 2003.
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SIG Hebbian updates
In a linear network the Hebbian update is 
The update maximizing Shannon output entropy with 

the SIG becomes

Which is more powerful and biologically plausible? 

kkk xyw η=Δ

Erdogmus, Principe, Hild, IEEE Signal Processing Letters, 2003.
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Training ADALINE sample by sample

An MLP can be trained layer by layer, without backpropagating
the errors by maximizing the mutual information (QMI CS) 
between the output of each layer and the desired response. 
This is similar to Linsker’s InfoMax (but nonparametric and with 
a desired signal). Weights are trained with the delta rule. 

Frequency doubler network

X Y1 Yk

D

max I Y1 D,( ){ } max I Yk D,( ){ }

First Hidden Node Second Hidden Node

Plot the output of two hidden nodes together The output of the networktdnn 5-2-1



ITL - Applications

ITL

System identification Feature extraction

Blind source separation Clustering

www.cnel.ufl.edu ITL has examples and Matlab code

http://www.cnel.ufl.edu/


Reproducing Kernel Hilbert Spaces as 
a Tool for Nonlinear System Analysis



Fundamentals of Kernel Methods

Kernel methods are a very important class of algorithms 
for nonlinear optimal signal processing and machine 
learning. Effectively they are shallow (one layer) 
neural networks (RBFs).

They exploit the linear structure of Reproducing Kernel Hilbert 
Spaces (RKHS) with very efficient computation. 
ANY (!) SP algorithm expressed in terms of inner products has 
in principle an equivalent representation in a RKHS, and may 
correspond to a nonlinear operation in the input space. 
Solutions may be analytic instead of adaptive, when the linear 
structure is used.



Fundamentals of Kernel Methods
Definition

An Hilbert space is a space of functions f(.)
Given a continuous, symmetric, positive-definite kernel 

,   a mapping Φ, and an inner product
A RKHS H is the closure of the span of all Φ(u).
Reproducing

Kernel trick

The induced norm  
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Fundamentals of Kernel Methods
RKHS proposed by Parzen

For a stochastic process {Xt, tєT} with T being an index set, 
the auto-correlation function RX : T×T→R defined as

RX(t,s) = E[XtXs]
is symmetric and positive-definite, thus induces a RKHS by 

the Moore-Aronszajn theorem, denoted as PRKHS (PH). 
Further there is a kernel mapping Θ such that 

Rx(t,s)=< Θ(t), Θ(s)>PH

Second order statistics on r. p. are equivalent to algebraic 
operations in the PRKHS. 

PRKHS brought understanding but no new results. 



Fundamentals of Kernel Methods
RKHS induced by the Gaussian kernel

The Gaussian kernel is symmetric and positive definite

thus induces a RKHS on a sample set {x1, …xN} of reals, 
denoted as GRKHS or GH. 

Further, by Mercer’s theorem, a kernel mapping Φ can be 
constructed which transforms data from the input space 
to GRKHS where: 

where <,> denotes inner product in GRKHS.
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ITL and Kernel Methods:
Central moments in feature space

ITL is also a kernel method. 
Information potential:

Substituting in the information potential

So Renyi’s quadratic entropy is the log of the norm square of the 
projected data mean, i.e. a central moment in feature space
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ITL and Kernel Methods:
Central Moments Estimators

Mean:   

Variance

Information Potential

Renyi’s Quadratic Entropy
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ITL and Kernel Methods:
SVM as a ITL cost function

The SVM classifier maximizes

subject

Rewrite as

Where 
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Adaptive Filtering in RKHS
The Kernel LMS algorithm

Widrow’s famed LMS algorithm can be written easily in RKHS
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Puskal Pokharel, Weifeng Liu, Jose Principe, 'Kernel LMS', Proc. ICASSP 2007, Hawaii



Adaptive Filtering in RKHS
The Kernel LMS algorithm

The KLMS gives rise to a RBF network that can be trained on-line, 
where the weights are the errors and it is constantly growing
with each sample. 

We have recently proved that the KLMS is well posed in the sense
of Hadamar, so it does not need regularization as most kernel 
algorithms in the literature. 

Prediction of Mackey-Glass
Time series (t=30)
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Liu W., Pokarel P., Principe J., “The Kernel LMS Algorithm”, accepted IEEE Trans. Signal Processing.



Correntropy:
A new generalized similarity measure

Correlation is one of the most widely used functions in 
signal processing. 

But, correlation only quantifies similarity fully if the 
random variables are Gaussian distributed. 

Can we define a new function that measures similarity 
but it is not restricted to second order statistics?

Use the ITL framework. 



Correntropy:
A new generalized similarity measure

Define correntropy of a random process {xt} as 

We can easily estimate correntropy using kernels

The name correntropy comes from the fact that the 
average over the lags (or the dimensions) is the 
information potential (the argument of Renyi’s entropy)

For strictly stationary and ergodic r. p. 
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Correntropy:
A new generalized similarity measure

How does it look like? The sinewave



Correntropy:
A new generalized similarity measure

Properties of Correntropy:
It has a maximum at the origin (            )
It is a symmetric positive function
Its mean value is the information potential 
Correntropy includes higher order moments of data 

The matrix whose elements are the correntopy at 
different lags is Toeplitz
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Correntropy:
A new generalized similarity measure

Correntropy as a cost function versus MSE.    
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Correntropy:
A new generalized similarity measure

Correntropy induces a metric (CIM) in the sample 
space defined by  

Therefore correntropy can
be used as an alternative
similarity criterion in the 
space of samples.
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Correntropy:
A new generalized similarity measure

Correntropy criterion implements M estimation of robust statistics. 
M estimation is a generalized maximum likelihood method. 

In adaptation the weighted square problem is defined as

When 

this leads to maximizing the correntropy of the error at the origin.   
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Correntropy:
A new generalized similarity measure

Nonlinear regression with outliers (Middleton model)

Polynomial approximator



RKHS induced by Correntropy
Definition

For a stochastic process {Xt, tєT} with T being an index set, 
correntropy defined as 

VX(t,s) = E[K(XtXs)]
is symmetric and positive definite. 
Thus it induces a new RKHS denoted as VRKHS (VH). There is a 

kernel mapping Ψ such that 
Vx(t,s)=< Ψ(t),Ψ(s) >VH

Any symmetric non-negative kernel is the covariance kernel of a 
random function and vice versa (Parzen).

Therefore, given a random function {Xt, t є T} there exists another 
random function {ft, t є T} such that 

E[ft fs]=VX(t,s)



RKHS induced by Correntropy
Relation with PRKHS

Correntropy estimates similarity in feature space. It 
transforms the component wise data to feature space 
by f(.) and then takes the correlation

f(.) is a function also implicitly defined (as φ was)
VRKHS is nonlinearly related to the input space 
(unlike PRKHS). 
VRKHS seems very appropriate to EXTEND 
traditional linear signal processing methods  to 
nonlinear system identification (there is no need for 
regularization and time consuming quadratic 
programming). 
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RKHS induced by Correntropy
Relation with GRKHS.

Gram matrix estimates pairwise evaluations in feature 
space. It is a sample by sample evaluation of functions
Gram matrix is NxN (data size)
Correntropy matrix is LxL (space size)

This means huge savings:
If we have a million samples in a 5x5 input space, Gram 

matrix is 106x106

The correntropy matrix is 5x5, but each element is 
computed from a million pairs. 

(very much like a MA model of order 5 estimated with 
one million samples)



Applications of VRKHS
Matched Filtering

Matched filter computes the inner product between the received 
signal r(n) and the template s(n) (Rsr(0)). 

The Correntropy MF computes

(Patent pending)
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Applications of VRKHS
Matched Filtering

Linear Channels
White Gaussian noise                            Impulsive noise

Template: binary sequence of length 20. kernel size using 
Silverman’s rule. 



Applications of VRKHS
Matched Filtering
Alpha stable noise (α=1.1), and the effect of kernel size

Template: binary sequence of length 20. kernel size using 
Silverman’s rule. 



Applications of VRKHS 
Minimum Average Correlation Energy filters

We consider a 2-dimensional image data as a d x 1 column vector.
The conventional MACE filter is formulated in the freq. domain.

Training Image matrix :

Correlation value at the origin

Average energy over all training images

Correlation energy of the i-th image

is a diagonal matrix whose  elements are the magnitude squared of 
the associated element of,      that is, the power spectrum of 

MACE filter minimizes the average energy while satisfying
the constraint



Application of VRKS
The Correntropy MACE filter

Exploiting the linear space properties of the VRKHS, the optimization 
problem in the feature space becomes

Solution

Test output
,

Do not know F explicitly!  But can compute



Applications of VRKHS
VMACE Simulation Results

Face Recognition (MACE vs. Correntropy MACE)

• We used the facial expression 
database from the Advanced 
Multimedia Processing Lab in CMU.

• The database consists of 13 subjects, 
whose facial  images were captured 
with 75 varying expressions. 

• The size of each image is 64x 64.

Report the results of the two most 
difficult cases who produced the worst performance with the MACE 
method.
The simulation results have been obtained by averaging (Monte-Carlo 
approach) over 100 different training sets (each training set consists of 
randomly chosen 5 images) 
The kernel size is ~ 40% of the standard deviation of the input data.

True class images

False class images

with additive Gaussian noise (SNR=10db).



Applications of VRKHS
VMACE ROC curves with different SNRs



Applications of VRKHS
CMACE on SAR/ATR – aspect angle mismatch



Applications of Correntropy
Wiener Filtering
We can also formulate the Wiener filter as a Correntropy filter 

instead of SVM regression by directly exploiting the linear 
structure of the VRKHS. However, there is still an 
approximation in the computation. 

Patent Pending
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Applications of Correntropy
Wiener Filtering
Prediction of the Mackey Glass equation ( a mild chaotic system)

Wiener versus correntropy RBF (50) versus correntropy
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Applications of VRKHS
Nonlinear temporal PCA
The Karhunen Loeve transform performs Principal Component 

Analysis (TPCA) of the autocorrelation of the r. p. 
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Applications of VRKHS
Nonlinear temporal PCA
Since the autocorrelation function of the projected data in VRKHS is 

given by correntropy, we can directly construct K with the 
correntropy. 

Example:                                     where ( ) sin(2 ) ( )x m A fm z mπ= + ( ) 0.8 (0,0.1) 0.1 (4,0.1) 0.1 ( 4,0.1)Np n N N N= × + × + × −

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1
FFT of clean signal and noisy observation

Observation
clean signal

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2
FFT of first PC using N×N Auto-correlation Matrix

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1
FFT of 2nd PC using N×N Correntropy Matrix

A VPCA
(2nd PC)

PCA by 

N-by-N
(N=256)

PCA by 
L-by-L
(L=4)

PCA by 
L-by-L 
(L=100)

0.2 100% 15% 3% 8%

0.25 100% 27% 6% 17%

0.5 100% 99% 47% 90%

1,000 Monte Carlo runs. σ=1



Applications of VRKHS
Correntropy Spectral Density

Average normalized amplitude

frequency

Kernel 
size

CSD is a function of the kernel size, and shows the difference 
between PSD (σ large) and the new spectral measure

Time Bandwidth product

Kernel size



Applications of VRKHS
Correntropy based correlograms

lags

Correntropy can be used in computational auditory scene analysis 
(CASA), providing much better frequency resolution. 
Figures show the correlogram from a 30 channel cochlea model for one
(pitch=100Hz)).
Auto-correlation Function                     Auto-correntropy Function



Applications of VRKHS
Correntropy based correlograms

lags

Correntropy can be used in computational auditory scene analysis 
(CASA), providing much better frequency resolution. 
Figures show the correlogram from a 30 channel cochlea model for two
superimposed vowels from two speakers (f0=100, 126 Hz)).
Auto-correlation Function                     Auto-correntropy Function



Conclusions

Information Theoretic Learning took us out of the local minimum 
of Gaussian statistics and MSE as cost functions. 

ITL generalizes many of the statistical concepts we take for granted. 

Kernel methods implement shallow neural networks (RBFs) and 
extend easily the linear algorithms we all know. 

KLMS is a simple algorithm for on-line learning of nonlinear systems

Correntropy defines a new RKHS that seems to be very 
appropriate for nonlinear system identification and robust control 

Correntropy may take us out of the local minimum of the (adaptive) 
design of optimum linear systems

For more information go to the website www.cnel.ufl.edu ITL 
resource for tutorial, demos and downloadable MATLAB code

http://www.cnel.ufl.edu/


ITL – Applications
Nonlinear system identification

Minimize information content of the residual error

Equivalently provides the best density matching 
between the output and the desired signals.

Adaptive
System

Input, x
Desired, d

Minimum
EntropyOutput, y Error, e

Erdogmus, Principe, IEEE Trans. Signal Processing, 2002. (IEEE SP 2003 Young Author Award)
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ITL – Applications 
Time-series prediction

Chaotic Mackey-Glass (MG-30) series
Compare 2 criteria:

Minimum squared-error
Minimum error entropy

System: TDNN (6+4+1)
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ITL - Applications

ITL

System identification Feature extraction

Blind source separation Clustering



ITL – Applications 
Optimal feature extraction

Data processing inequality: Mutual information is monotonically non-
increasing.
Classification error inequality: Error probability is bounded from below 
and above by the mutual information.

PhD on feature extraction for sonar target recognition (2002)

x

Backpropagate Information Forces

Maximize
Mutual 

Information
z

Class labels (d)

z Classifier
y

Compare

d

Principe, Fisher, Xu, Unsupervised Adaptive Filtering, (S. Haykin), Wiley, 2000.



ITL – Applications 
Extract 2 nonlinear features

64x64 SAR images of 3 vehicles: BMP2, BTR70, T72

P(Correct)

MI+LR 94.89%
SVM 94.60%
Templates 90.40%

Zhao, Xu and Principe, SPIE Automatic Target Recognition, 1999.
Hild, Erdogmus, Principe, IJCNN Tutorial on ITL, 2003.

Classification resultsInformation forces in training



ITL - Applications

ITL

System identificationFeature extraction

Blind source separation Clustering



ITL – Applications 
Independent component analysis

Observations are generated by an unknown mixture 
of statistically independent unknown sources.

Minimize
Mutual InformationH W

s x y z

Sphering

Uncorrelated
signals

Mixed
signals

Independent
signals

R

Independent
sources

kk Hsx = )()()(
1

zz HzHI
n

c
c −= ∑

=

Ken Hild II, PhD on blind source separation (2003)



ITL – Applications 
On-line separation of mixed sounds

Observed mixtures and separated outputs
X1: X2: X3:
Z1: Z2: Z3:
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Hild, Erdogmus, Principe, IEEE Signal Processing Letters, 2001.



ITL - Applications

ITL

System identificationFeature extraction

Blind source separation Clustering



ITL – Applications 
Information theoretic clustering

Select clusters based on entropy and divergence:
Minimize within cluster entropy
Maximize between cluster divergence

Robert Jenssen PhD on information theoretic clustering

Jenssen, Erdogmus, Hild, Principe, Eltoft, IEEE Trans. Pattern Analysis and Machine Intelligence, 2005. (submitted)
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