Applied Nonparametric Hierarchical Bayes

Michael I. Jordan

Department of Statistics
Department of Electrical Engineering and Computer Science
University of California, Berkeley

http://www.cs.berkeley.edu/~jordan

Acknowledgments: David Blei, Yee Whye Teh

Themes

- Intelligent systems are based on certain architectural and algorithmic choices
- What are the general principles underlying these architectural and algorithmic choices?
- How do those principles allow us to go from a problem specification to an algorithmic solution?

Applied Nonparametric Hierarchical Bayes

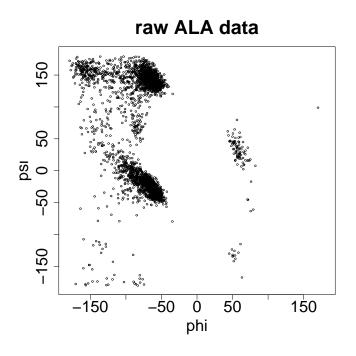
- nonparametric: the number of parameters (degrees of freedom) of a system should be allowed to grow as more data are observed
- Bayes: probability theory and decision theory provide a solid foundation on which to understand learning, perception, reasoning and action
- hierarchical: we often have multiple, related streams of data, and we want to share information among those streams
- applied: we want to solve real-world problems

Document and Image Modeling

- Define a topic to be a probability distribution across words in some vocabulary
- Define a document to be a probability distribution across topics
- Given a corpus of documents, find the topics and find the patterns of usage of topics across documents
- Each document is a clustering problem; we must link multiple clusterings across a corpus
- Note that a "document" can be an image, where a "word" is a local image feature

Protein Folding

- A protein is a folded chain of amino acids
- The backbone of the chain has two degrees of freedom per amino acid (phi and psi angles)
- Empirical plots of phi and psi angles are called Ramachandran diagrams

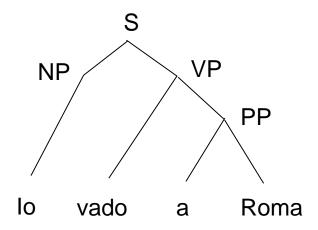


Protein Folding (cont.)

- We want to model the density in the Ramachandran diagram to provide an energy term for protein folding algorithms
- We actually have a linked set of Ramachandran diagrams, one for each amino acid neighborhood
- We thus have a linked set of density estimation problems

Natural Language Parsing

• Given a corpus of sentences, some of which have been parsed by humans, find a grammar that can be used to parse future sentences



 Much progress over the past decade; state-of-the-art methods are all statistical

Natural Language Parsing (cont.)

- Key idea: *lexicalization* of context-free grammars
 - the grammatical rules (S \rightarrow NP VP) are conditioned on the specific lexical items (words) that they derive
- This leads to huge numbers of potential rules, and (adhoc) shrinkage methods are used to control the counts
- Need to control the numbers of clusters (model selection) in a setting in which many tens of thousands of clusters are needed
- Need to consider related groups of clustering problems (one group for each grammatical context)

Haplotype Modeling

- ullet Consider M binary markers in a genomic region
- ullet There are 2^M possible *haplotypes*—i.e., states of a single chromosome
 - but in fact, far fewer are seen in human populations
- A *genotype* is a set of unordered pairs of markers (from one individual)

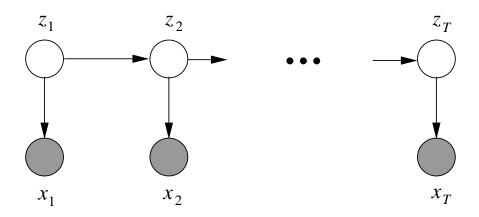
$$\begin{array}{c|cccc}
A & B & c \\
\hline
a & b & C \\
\hline
 & & \{A, a\} \\
 & & \{C, c\}
\end{array}$$

- Given a set of genotypes (multiple individuals), estimate the underlying haplotypes
- This is a clustering problem

Haplotype Modeling (cont.)

- A key problem is inference for the number of clusters
- Consider now the case of multiple groups of genotype data (e.g., ethnic groups)
- Geneticists would like to find clusters within each group but they would also like to share clusters between the groups

Nonparametric Hidden Markov Models



- An open problem—how to work with HMMs and state space models that have an unknown and unbounded number of states?
- Each row of a transition matrix is a probability distribution across "next states"
- We need to estimation these transitions in a way that links them across rows

Outline

- Dirichlet Processes (clusters)
- Hierarchical Dirichlet Processes (tied clusters)
- Beta Processes (features)
- Hierarchical Beta Processes (tied features)

Clustering—How to Choose K?

Clustering—How to Choose K?

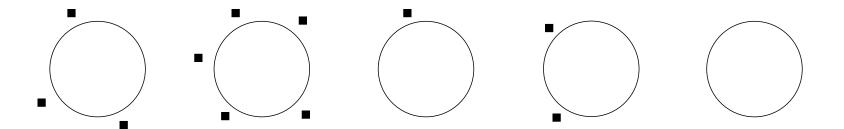
- Adhoc approaches (e.g., hierarchical clustering)
 - they do often yield a data-driven choice of K
 - but there is little understanding of how good these choices are
- Methods based on objective functions (M-estimators)
 - e.g., K-means, spectral clustering
 - do come with some frequentist guarantees
 - but it's hard to turn these into data-driven choices of K
- Parametric likelihood-based approaches
 - finite mixture models, Bayesian variants thereof
 - various model choice methods: hypothesis testing, cross-validation, bootstrap, AIC, BIC, DIC, Laplace, bridge sampling, reversible jump, etc
 - but do the assumptions underlying the method really apply to this setting?
 (not often)
- Let's try something different...

Chinese Restaurant Process (CRP)

- ullet A random process in which n customers sit down in a Chinese restaurant with an infinite number of tables
 - first customer sits at the first table
 - -mth subsequent customer sits at a table drawn from the following distribution:

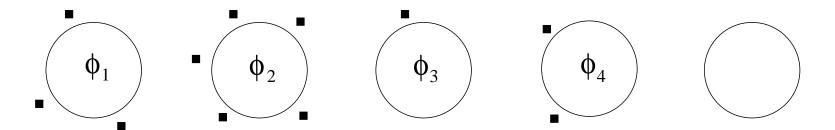
$$\frac{P(\text{previously occupied table } i \mid \mathcal{F}_{m-1}) \quad \propto \quad n_i}{P(\text{the next unoccupied table} \mid \mathcal{F}_{m-1}) \quad \propto \quad \alpha_0} \tag{1}$$

where n_i is the number of customers currently at table i and where \mathcal{F}_{m-1} denotes the state of the restaurant after m-1 customers have been seated



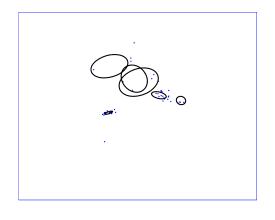
The CRP and Clustering

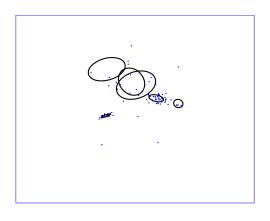
- Data points are customers; tables are clusters
 - the CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
 - a likelihood—e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters—the first customer to sit at table k chooses the parameter vector for that table (ϕ_k) from a prior G_0

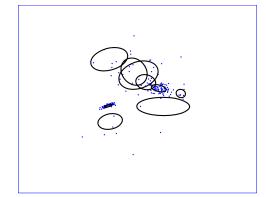


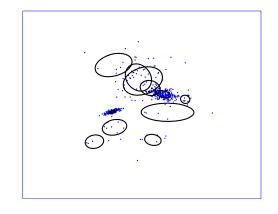
So we now have a distribution—or can obtain one—for any quantity that
we might care about in the clustering setting

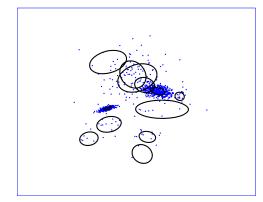
CRP Prior, Gaussian Likelihood, Conjugate Prior











$$\phi_k = (\mu_k, \Sigma_k) \sim N(a, b) \otimes IW(\alpha, \beta)$$

$$x_i \sim N(\phi_k)$$

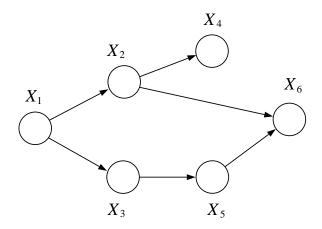
 $x_i \sim N(\phi_k)$ for a data point i sitting at table k

Inference for the CRP

- We've described how to generate data from the model; how do we go backwards and generate a model from data?
- A wide variety of variational, combinatorial and MCMC algorithms have been developed
- E.g., a Gibbs sampler is readily developed by using the (deep) fact that the Chinese restaurant process is exchangeable
 - to sample the table assignment for a given customer given the seating of all other customers, simply treat that customer as the last customer to arrive
 - in which case, the assignment is made proportional to the number of customers already at each table (cf. preferential attachment)
 - parameters are sampled at each table based on the customers at that table (cf. K means)
- (This isn't the state of the art, but it's easy to explain on one slide)

Directed Graphical Models

ullet Given a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$, where each node $v\in\mathcal{V}$ is associated with a random variable X_v :

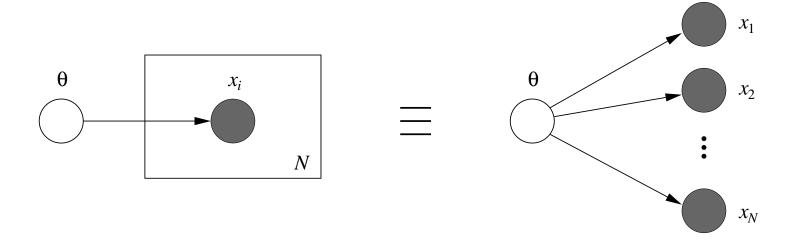


• The joint distribution on (X_1, X_2, \dots, X_N) factorizes according to the "parent-of" relation defined by the edges \mathcal{E} :

$$p(x_1, x_2, x_3, x_4, x_5, x_6; \theta) = p(x_1; \theta_1) \ p(x_2 \mid x_1; \theta_2)$$
$$p(x_3 \mid x_1; \theta_3) \ p(x_4 \mid x_2; \theta_4) \ p(x_5 \mid x_3; \theta_5) \ p(x_6 \mid x_2, x_5; \theta_6)$$

Plates

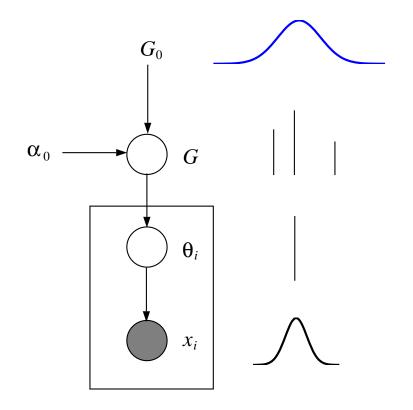
• A plate is a "macro" that allows subgraphs to be replicated:



• Shading denotes conditioning

Finite Mixture Models

$$\phi_k \sim G_0$$
 $\pi_k \sim \operatorname{Dir}(\alpha_0/K, \dots, \alpha_0/K)$
 $G = \sum_{k=1}^K \pi_k \, \delta_{\phi_k}$
 $\theta_i \sim G$
 $x_i \sim p(\cdot \mid \theta_i)$



ullet Note that G is a random measure

Going Nonparametric—A First Attempt

• Define a countably infinite mixture model by taking K to infinity and hoping that " $G = \sum_{k=1}^{\infty} \pi_k \ \delta_{\phi_k}$ " means something, where

$$\phi_k \sim G_0$$

$$\pi_k \sim \operatorname{Dir}(\alpha_0/K, \dots, \alpha_0/K) \text{ as } K \to \infty$$

- Several mathematical hurdles to overcome:
 - What is the distribution of any given π_k as $K \to \infty$? Does it stabilize at some fixed distribution?
 - Is $\sum_{k=1}^{\infty} \pi_k = 1$ under some suitable notion of convergence?
 - Do we get a few large mixing proportions, or are they all of similar "size"?
 - Do we get any "clustering" at all?
- This seems hard; let's approach the problem from a different point of view

Stick-Breaking

• Define an infinite sequence of Beta random variables:

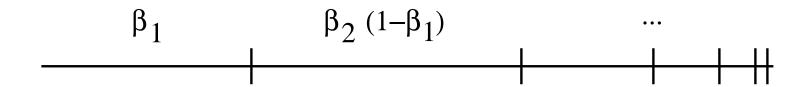
$$\beta_k \sim \text{Beta}(1, \alpha_0)$$
 $k = 1, 2, \dots$

• And then define an infinite sequence of mixing proportions as:

$$\pi_1 = \beta_1$$

$$\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l) \qquad k = 2, 3, \dots$$

• This can be viewed as breaking off portions of a stick:



Stick-Breaking (cont)

• We now have an explicit formula for each π_k :

$$\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_l)$$

- ullet And now $G=\sum_{k=1}^\infty \pi_k \delta_{\phi_k}$ has a clean definition as a random measure
- The distribution of G is known as a Dirichlet process
 - it can be shown that for any finite partition (A_1,\ldots,A_r) of the sample space, the random vector $(G(A_1),\ldots,G(A_r))$ is distributed as a finite-dimensional Dirichlet distribution
- We write this as

$$G \sim \mathrm{DP}(\alpha_0, G_0),$$

where α_0 is known as the concentration parameter and G_0 is known as the base measure

Dirichlet Process Mixture Models