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Themes

e Intelligent systems are based on certain architectural and algorithmic choices

e \What are the general principles underlying these architectural and algorithmic
choices?

e How do those principles allow us to go from a problem specification to an
algorithmic solution?



Applied Nonparametric Hierarchical Bayes

nonparametric: the number of parameters (degrees of freedom) of a system
should be allowed to grow as more data are observed

Bayes: probability theory and decision theory provide a solid foundation on
which to understand learning, perception, reasoning and action

hierarchical: we often have multiple, related streams of data, and we want
to share information among those streams

applied: we want to solve real-world problems



Document and Image Modeling

Define a topic to be a probability distribution across words in some
vocabulary

Define a document to be a probability distribution across topics

Given a corpus of documents, find the topics and find the patterns of usage
of topics across documents

Each document is a clustering problem; we must link multiple clusterings
across a corpus

Note that a “document” can be an image, where a “word"” is a local image
feature



Protein Folding

e A protein is a folded chain of amino acids

e The backbone of the chain has two degrees of freedom per amino acid (phi
and psi angles)

e Empirical plots of phi and psi angles are called Ramachandran diagrams
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Protein Folding (cont.)

e \We want to model the density in the Ramachandran diagram to provide an
energy term for protein folding algorithms

e We actually have a linked set of Ramachandran diagrams, one for each
amino acid neighborhood

e We thus have a linked set of density estimation problems



Natural Language Parsing

e Given a corpus of sentences, some of which have been parsed by humans,
find a grammar that can be used to parse future sentences

S
NP VP
PP

o vado a Roma

e Much progress over the past decade; state-of-the-art methods are all
statistical



Natural Language Parsing (cont.)

Key idea: lexicalization of context-free grammars

— the grammatical rules (S5 — NP VP) are conditioned on the specific
lexical items (words) that they derive

This leads to huge numbers of potential rules, and (adhoc) shrinkage
methods are used to control the counts

Need to control the numbers of clusters (model selection) in a setting in
which many tens of thousands of clusters are needed

Need to consider related groups of clustering problems (one group for each
grammatical context)



Haplotype Modeling

Consider M binary markers in a genomic region

There are 2™ possible haplotypes—i.e., states of a single chromosome

— but in fact, far fewer are seen in human populations

A genotype is a set of unordered pairs of markers (from one individual)

A B C
{A a}
{C, c}

Given a set of genotypes (multiple individuals), estimate the underlying
haplotypes

This is a clustering problem



Haplotype Modeling (cont.)

e A key problem is inference for the number of clusters

e Consider now the case of multiple groups of genotype data (e.g., ethnic
groups)

e Geneticists would like to find clusters within each group but they would also
like to share clusters between the groups
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Nonparametric Hidden Markov Models

Zl 22 ZT
Xy X2 X7
e An open problem—how to work with HMMs and state space models that

have an unknown and unbounded number of states?

e Each row of a transition matrix is a probability distribution across “next
states”

e \We need to estimation these transitions in a way that links them across rows
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Outline

Dirichlet Processes (clusters)
Hierarchical Dirichlet Processes (tied clusters)
Beta Processes (features)

Hierarchical Beta Processes (tied features)
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Clustering—How to Choose K7?
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Clustering—How to Choose K7?

Adhoc approaches (e.g., hierarchical clustering)

— they do often yield a data-driven choice of K
— but there is little understanding of how good these choices are

Methods based on objective functions (M-estimators)

— e.g., K-means, spectral clustering

— do come with some frequentist guarantees
— but it's hard to turn these into data-driven choices of K

Parametric likelihood-based approaches

— finite mixture models, Bayesian variants thereof

— various model choice methods:

hypothesis testing, cross-validation,

bootstrap, AIC, BIC, DIC, Laplace, bridge sampling, reversible jump,

etc

— but do the assumptions underlying the method really apply to this setting?

(not often)
Let's try something different...
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Chinese Restaurant Process (CRP)

e A random process in which n customers sit down in a Chinese restaurant
with an infinite number of tables

— first customer sits at the first table
— mth subsequent customer sits at a table drawn from the following
distribution:

P(previously occupied table i | F,,—1) o n; (1)
P(the next unoccupied table | F,,, 1) o ag

where n; is the number of customers currently at table : and where F,,,_1
denotes the state of the restaurant after m — 1 customers have been

seated

QO ODC
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The CRP and Clustering

e Data points are customers; tables are clusters

— the CRP defines a prior distribution on the partitioning of the data and
on the number of tables

e This prior can be completed with:

— a likelihood—e.g., associate a parameterized probability distribution with

each table
— a prior for the parameters—the first customer to sit at table £ chooses

the parameter vector for that table (¢y) from a prior G
| | - | .
|
|
| " " u
e So we now have a distribution—or can obtain one—for any quantity that
we might care about in the clustering setting
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CRP Prior, Gaussian Likelihood, Conjugate Prior

o = (kk, Xk) ~ N(a,b) ® IW(a, B)
r; ~ N(opg) for a data point ¢ sitting at table £
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Inference for the CRP

e We've described how to generate data from the model; how do we go
backwards and generate a model from data?

e A wide variety of variational, combinatorial and MCMC algorithms have
been developed

e E.g., a Gibbs sampler is readily developed by using the (deep) fact that the
Chinese restaurant process is exchangeable

— to sample the table assignment for a given customer given the seating of
all other customers, simply treat that customer as the last customer to
arrive

— in which case, the assignment is made proportional to the number of
customers already at each table (cf. preferential attachment)

— parameters are sampled at each table based on the customers at that
table (cf. K means)

e (This isn't the state of the art, but it’s easy to explain on one slide)
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Directed Graphical Models

e Given a graph G = (V,€), where each node v € V is associated with a
random variable X,:

X4
X2

o

X3 Xs

e The joint distribution on (Xi, Xs,...,Xn) factorizes according to the
“parent-of” relation defined by the edges £&:

p($1,$2,$3,$4,$5,$6;9) — p(xlael) p(372 ‘ C131;92)

p(x3|71;03) p(ra|w2;04) P(75 | 23;05) D(76 | T2, 753 06)
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Plates

e A plate is a "macro’ that allows subgraphs to be replicated:

0 X
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e Shading denotes conditioning
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Finite Mixture Models

o~ Go
mr ~ Dir(ag/K,...,a0/K)

K
G = Zﬂk (5¢k
k=1

0, ~ G
ri ~ p(-]0;)

e Note that (G is a random measure

0

|

Y
.

G
0,
Xi
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Going Nonparametric—A First Attempt

e Define a countably infinite mixture model by taking K to infinity and hoping
that "G = ) .-, mx dp," means something, where

o~ Go
mr ~ Dir(ag/K,...,a0/K) as K — o0

e Several mathematical hurdles to overcome:

— What is the distribution of any given 7, as K — oo? Does it stabilize at
some fixed distribution?

— Is Y7~ ; m = 1 under some suitable notion of convergence?

— Do we get a few large mixing proportions, or are they all of similar “size”?

— Do we get any “clustering” at all?

e This seems hard; let's approach the problem from a different point of view
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Stick-Breaking

e Define an infinite sequence of Beta random variables:

Br ~ Beta(1, ap) k=1,2,...

e And then define an infinite sequence of mixing proportions as:

™ = P

Tk

k—1

5kH(1—5l) k=23, ...
=1

e This can be viewed as breaking off portions of a stick:

Bl Bz (1_[31)
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Stick-Breaking (cont)

We now have an explicit formula for each 7:

And now G = Y ,_, mrds, has a clean definition as a random measure

The distribution of G is known as a Dirichlet process

k—1
me =B [ [ (1 - B)
=1

— it can be shown that for any finite partition (A,...,A,) of the
sample space, the random vector (G(A1),...,G(A;)) is distributed as a
finite-dimensional Dirichlet distribution

We write this as

G ~ DP(Oéo, Go),

where aq is known as the concentration parameter and G is known as the

base measure
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Dirichlet Process Mixture Models



