

Soft Computing for Sensor and Algorithm Fusion

Jim Keller

Electrical and Computer Engineering University of Missouri- Columbia KellerJ@missouri.edu http://www.missouri.edu/~kellerj

Work done with many colleagues and students at the University of Missouri and elsewhere

Introduction

- Complex problem domains like Landmine Detection, ATR, Handwriting Recognition, etc
 - Need multiple features, algorithms, sensors to resolve ambiguity
- Uncertainty abounds in these situations
- We Need Models and Calculi to Manage Uncertainty in Computational Systems for Algorithm/Sensor Fusion
- Here, we discuss Fuzzy Set Theory and Fuzzy Logic as the underlying fusion technology

LADAR Range Image

Pattern Recognition

- Find Meaningful Associations Among Representations of Objects
 - Assign Class Labels to New (Unknown) Samples
- Supervised Learning
 - Have Labeled Training Data to "Learn" the Assignment Function
 - Bayes Decision Theory,
 - MLP Neural Networks, ...
- Unsupervised Learning
 - Find "Natural" Groups Within a Complex DataSet
 - Clustering,
 - SOFM, etc

How We'd Like the "World" to Be

More Likely How It Is!

feature 1

Class Membership Ambiguity

• To What Chacter Classes Do the Following Cursive Examples Belong?

Ha a 71 9 J GO

• Can We Make a Precise Assignment Here for Use in a Handwritten Word Recognition System?

Class Membership Ambiguity

Ha a 71 9	7 J GO
-----------	--------

LaRGO HUBBARD

Marietta, Douglasvielle GENEVA New myma buch

Context is Needed to Resolve Ambiguity

Another Look at Handwriting Recognition

Need to Allow Multiple Hypotheses for Character Class Assignment

Principle of Least Committment

Uncertainty in Class "A" Definition

All are perfectly good A's

Fuzzy Set Theoretic Solutions Support the Two Principles of David Marr for the Design of Intelligent (Vision) Algorithms:

Principle of Least Commitment

Don't do something that may later have to be undone

"If the Principle of Least Commitment has to be disobeyed, one is either doing something wrong or something very difficult"

Marr's Second Principle

Principle of Graceful Degradation

Degrading the data will not prevent the delivery of at least some of the answer

Algorithms Should Be Robust

Processes should possess some degree of Continuity

Fuzzy Confidence in Pattern Recognition

- Many (most) pattern recognition algorithms can be "softened"
- Advantage comes from combination of multiple features
- Example in Land Mine Detection using 3-D volumetric GPR data
 - Fuzzy prototypes for mines/background developed
 - Based on idea that a hyperbola in radar should exist for idea mine
 - Confidence assigned in 3 space, aggregated and projected to surface

Simple Fuzzy Set Approach to Landmine Detection

OLD ALGORITHM

MU ALGORITHM

Simple Fuzzy Set Approach to Landmine Detection

Increased Detections (Verified through Blind Tests)

OLD ALGORITHM MU ALGORITHM

Information Fusion

- Wald gave a definition of information fusion
 - "Information Fusion is a formal framework in which are expressed means and tools for the alliance of data originating from different sources".
- The *different* sources of information
 - Different Sensor Systems
 - Different classifiers
 - Statistical
 - > Deterministic

➢ Fuzzy

- Different features for the same classifier
- > Human Intelligence

What Fusion methods will we discuss?

- Fuzzy Integrals
 - Non-linear combination of information source confidence with (possibly subjective) estimates of worth of subsets of the information sources
 - Will consider numeric and linguistic (higher order) fusion
- Fuzzy Logic
 - Rule-based approaches, attempting to model human decision making

Fuzzy Integrals

- Sources of information in a set X (sensors, features, algorithms, etc.)
- Worth of sources comes from a Fuzzy Measure: $g: 2^X \rightarrow [0,1]$

$$- g(\phi) = 0$$
 and $g(X) = 1$

$$- g(\mathbf{A}) \leq g(\mathbf{B}) \text{ if } \mathbf{A} \subseteq \mathbf{B}$$

– If $\{A_i\}$ is an increasing sequence of subsets of X, then

$$\lim_{i\to\infty} g(A_i) = g\left(\bigcup_{i=1}^{\infty} A_i\right)$$

Fuzzy Integrals

• A fuzzy measure g is called a Sugeno measure (g_{λ} -fuzzy measure) if additionally:

For all A, $B \subseteq X$ with $A \cap B = \phi$,

 $g(A \cup B) = g(A) + g(B) + \lambda \cdot g(A) \cdot g(B)$ for some $\lambda > -1$

For any Sugeno fuzzy measure λ can be uniquely determined for a finite set X by solving

$$1 + \lambda = \prod_{i=1}^{n} \left(1 + \lambda g^{i} \right)$$

• where $X = \{x_1, ..., x_n\}$ and $g^i = g(\{x_i\})$ interpreted as the (possibly subjective) importance of the single information source x_i in determining the evaluation of a class hypothesis

Where do the fuzzy measures come from?

- Heuristic assignment
 - easier for λ -measures: Only need to specify "worth" of each source
- Direct training of the densities
 - Reward/punishment approach
 - Genetic algorithms
- Optimize entire measure for Choquet integral via Quadratic Programming – more on this later

The Sugeno Fuzzy Integral

- Let X be a finite set of information sources, $h:X \rightarrow [0,1]$ a partial evaluation function, and $g:2^X \rightarrow [0,1]$ a fuzzy measure
- The Sugeno fuzzy integral of h with respect to g is

$$\int_{S} h \circ g = \sup_{\alpha \in [0,1]} \{ \min(\alpha, g(H_{\alpha})) \}$$

where $H_{\alpha} = \left\{ x | h(x) \ge \alpha \right\}$

• The Best Pessimistic Agreement between evidence and the worth of the evidence

The Sugeno Fuzzy Integral

- Since X is finite, re-order X so that $h(x_1) \ge h(x_2) \ge \cdots \ge h(x_n)$
- Then the Sugeno Fuzzy Integral is

$$\int_{S} h \circ g = \bigvee_{i=1}^{n} (h(x_i) \wedge g(H_i))$$

where $H_i = \{x_1, \dots, x_i\}$

- The measures of these n subsets can be found recursively for λ -measures
- **Problem:** Not a true extension of Lebesgue integral (if measure is additive)

Choquet Fuzzy Integral

- Let $X = \{x_1, \dots, x_n\}, g$ be a fuzzy measure and $h: X \rightarrow [0, 1]$
- Finite Choquet Integral

$$\int_{c} \mathbf{h} \circ \mathbf{g} = \sum_{i=1}^{n} g(\mathbf{X}_{i}) [h(\mathbf{x}_{i}) - h(\mathbf{x}_{i+1})]$$

or
$$\int_{c} \mathbf{h} \circ \mathbf{g} = \sum_{i=1}^{n} h(\mathbf{x}_{i}) [g(\mathbf{X}_{i}) - g(\mathbf{X}_{i-1})]$$

- where $h(x_{n+1}) = 0$, $g(X_0) = 0$, $h(x_1) \ge h(x_2) \ge ... \ge h(x_n)$ and $X_i = \{x_1, ..., x_i\}$
- Looks like a linear combination, but depends on the sort

Fuzzy Integrals for Image Processing

- Both Sugeno and Choquet fuzzy integrals used for non-linear image filtering
- Can implement morphological filters, all linear and order statistic filters, all linear combination of order statistic filters, etc.
- Used instead of means and variances for "size-contrast" filters
- Used to segmentation and to fuse multiple detectors

Choquet Integrals in LADAR ATR

Preprocessed by Choquet Filter

Detector 1

Detector 2

Keep detections up but lower false alarms

Detector 3

Choquet Fusion

Thresholded and Dilated

Information Fusion for Demining Fusing Outputs of Multiple Algorithms on GPR

Numeric Fusion on MU Signature Library

Improvement given by Algorithm Fusion with Choquet and Sugeno Fuzzy Integrals

Reductior	ı in False	Alarms o	ver Line-I	Based ATR (One B	asic ATR)
DETRANGE	LINE	CHOQ	SUG	CHOQ_RED	SUG_RED
206-207	82	97	ND	-18%	NA
187-193	42	27	27	36%	36%
183-186	40	22	24	45%	40%
181-183	32	22	24	32%	26%
AVERAGE RE	DUCTIC	ON IN FA	LSE ALA	RM 24%	34%
ND = No detect	tions in th	at range			

Numeric Fusion on MU Signature Library

Reduction in False Alarms over Gradient-Based ATR (Another Basic Detection Algorithm)							
DETRANGE	GRAD	CHOQ	SUG	CHOQ_RED	SUG_RED		
206-207	82	97	ND	-18%	NA		
201-203	64	67	42	-4%	35%		
198-199	57	45	36	22%	37%		
195-197	54	37	ND	31%	NA		
191-193	52	ND	27	NA	48%		
187-189	50	27	ND	46%	NA		
181-183	50	22	18	56%	64%		
AVERAGE RI	EDUCTIO	ON IN FAI	LSE ALA	ARMS 22%	46%		

ND = No detections in that range

Minimum Classification Error for Information Fusion Hot off the Press!

Mendez-Vazquez, A., Gader, P., Keller, J., and Chamberlin, K., "Minimum classification error training for Choquet integrals with applications to landmine detection", *IEEE Transactions on Fuzzy Systems*, in Press, 2007

Choquet Integral for Fusion

• Potential Problem when used for classification

- Fusion of evidence for each class is treated independently
- Measures are learned for each class
 - Provide target values for each intgral
- > Class-Integral values are not directly comparable
- Similar to problem with HMMs
- Like with HMMs, use discriminative training
 Train all integrals simultaneously

The Choquet Integral

- For this development, use the alternate formulation
- Let the original sources of information $\{x_1, \ldots, x_n\}$ be reordered into $\{x_{(1)}, \ldots, x_{(n)}\}$ such that

$$0 \le f(x_{(1)}) \le \dots \le f(x_{(n)})$$

• Let $A_{(i)}$ be defined as $A_{(i)} = \{x_{(i)}, ..., x_{(n)}\}$

• Then

$$C_g(f) = \sum_{i=1}^n g(A_{(i)}) \cdot (f(x_{(i)}) - f(x_{(i-1)}))$$

Least Squared Error (LSE)

• Error Function depends on knowing desired outputs

$$E^{2} = \frac{1}{2} \left(\sum_{x \in \omega_{1}} (C_{g}(f(x)) - \alpha_{1})^{2} + \sum_{x \in \omega_{2}} (C_{g}(f(x)) - \alpha_{2})^{2} \right)$$

- Use Quadratic Programming to find the measure
- Or use Gradient Descent for Sugeno λ-measures
 > Need some of the derivatives to follow

Minimum Classification Error

- In minimum classification error (MCE):
 - We do not consider cost functions that used fixed desired outputs
 - W depend on a function of differences of Choquet integral in the dissimilarity measure

$$d_{i}(x) = -C_{g_{i}}(f_{i}(x)) + \max_{j \neq i} \{C_{g_{j}}(f_{j}(x))\}$$

Note that under this function, smaller values of $d_i(x)$ give higher confidence that ω belongs to the class *i*.

Minimum classification error (Cont)

• Use a smooth, monotonically increasing function that is differentiable almost in everywhere

$$l_{i}(x) = \begin{cases} \frac{1}{1 + e^{(-\alpha d_{i}(x))}}, d_{i}(x) > 0\\ 0, d_{i}(x) \le 0 \end{cases}$$

Final Cost function

• The final cost function to be minimized looks like

$$E = \sum_{x \in C_1} l_1(x) + \ldots + \sum_{x \in C_n} l_n(x)$$

• Use Gradient Descent

Derivative of the cost function

• Differentiating the cost function with respect to the densities we have

$$\frac{\partial \mathbf{E}}{\partial \mathbf{g}_{i}^{j}} = \sum_{\mathbf{x} \in \mathbf{C}_{1}} l_{1}(\mathbf{x})(1 - l_{1}(\mathbf{x}))\frac{\partial \mathbf{d}_{1}(\mathbf{x})}{\partial \mathbf{g}_{1}^{j}} + \ldots + \sum_{\mathbf{x} \in \mathbf{C}_{n}} l_{n}(\mathbf{x})(1 - l_{n}(\mathbf{x}))\frac{\partial \mathbf{d}_{n}(\mathbf{x})}{\partial \mathbf{g}_{n}^{j}}$$

where g_i^j represent the *j*th density for class *i*.

• The term
$$\frac{\partial d_n(x)}{\partial g_n^j}$$
 is equal to

$$\frac{\partial d_n(x)}{\partial g_n^{j}} = \begin{cases} \frac{\partial C_{g_k}(f_k(x))}{\partial g_i^{j}} & \text{if } k = i \\ \frac{\partial C_{g_i}(f_i(x))}{\partial g_i^{j}} & \text{if } k \neq i \text{ and } C_{g_i}(f_i(x)) = \max_{s \neq k} \left\{ C_{g_s}(f_s(x)) \right\} \\ 0 & \text{if } k \neq i \text{ and } C_{g_i}(f_i(x)) \neq \max_{s \neq k} \left\{ C_{g_s}(f_s(x)) \right\} \end{cases}$$

Electrical and Computer Engineering The University of Missouri - Columbia

Problem: What is
$$\frac{\partial C_{g_k}(f_k(x))}{\partial g_i^j}$$
?
This is simply

$$\frac{\partial C_{g}(f)}{\partial g_{j}} = \sum_{i=1}^{n} \frac{\partial g(A_{(i)})}{\partial g_{j}} \left(f(x_{(i)}) - f(x_{(i-1)}) \right)$$

• Hence, we still need to know

$$\frac{\partial g(A_{(i)})}{\partial g_{j}}$$

Electrical and Computer Engineering

The University of Missouri - Columbia

• We know that

$$g(A_{(i)}) = g(\{x_{(i)}\} \cup A_{(i+1)}) = g_{(i)} + g(A_{(i+1)}) + \lambda g_{(i)}g(A_{(i+1)})$$

• Thus

$$\frac{\partial g(A_{(i)})}{\partial g_{j}} = \begin{cases} 1 + \lambda g(A_{(i)}) + g_{(i)}g(A_{(i+1)})\frac{\partial \lambda}{\partial g_{j}} + (1 + \lambda g_{(i)})\frac{\partial g(A_{(i+1)})}{\partial g_{j}}, & \text{if } (i) \neq n, (i) = j \\ g_{(i)}g(A_{(i+1)})\frac{\partial \lambda}{\partial g_{j}} + (1 + \lambda g_{(i)})\frac{\partial g(A_{(i+1)})}{\partial g_{j}}, & \text{if } (i) \neq n, (i) \neq j \\ 1 & \text{if } (i) = n, j = n \\ 0 & \text{if } (i) \neq n, j \neq n \end{cases}$$

The derivative
$$\frac{\partial \lambda}{\partial g_j}$$

- Using the fact that the Sugeno λ -measure has the property $(\lambda + 1) = \prod_{i=1}^{n} (1 + \lambda g_i)$
- We have (using implicit differentiation)

$$\frac{\partial \lambda}{\partial g_{j}} = \frac{\lambda^{2} + \lambda}{\left(1 + g_{j}\lambda \left[1 - (\lambda + 1)\sum_{i=1}^{n} \frac{g_{i}}{1 + g_{j}\lambda}\right]\right)}$$

Gradient Descent for the MCE

• With the previous results, we implement a Gradient Descent algorithm for the MCE

$$\vec{g} = \vec{g} + \alpha \nabla E$$

- Does not need complex formulations
 - Required for non-linear optimization

Experiments in Landmine Detection

- The Least Squared Error(LSE) and MCE training methods were applied to a two-class algorithm fusion problem in landmine detection
 - The landmine detection problem involved processing Ground Penetrating Radar (GPR) sensor returns
- The data set contained 2422 8-dimensional samples of confidence values from each of the eight detection algorithms. The data set contained 271 mines samples and 2151 non-mine samples.

The University of Missouri - Columbia

Electrical and Computer Engineering

Experimental Results

Least squared error sensitive to desired outputs

ROC curves showing the sensitivity to desired outputs for LSE in the full measure. α_1 and α_2 • represent the desired outputs for mine and non-mines.

Advantages of MCE

- MCE is not sensitive to desired outputs, as is LSE
- MCE is, in general, better than the individual detectors, with a range of improvement between 0.44% and 65.07%
- On this data, improvement of MCE over LSE training
 - Ranges between 11.06% and 37.51%
- It is possible for the Sugeno λ-measure and the general measure trained with LSE to be as good as the one trained by MCE. For this to happen, it is necessary to have a set of correct desired outputs!

Experiments as a Classifier

- The MCE training was also applied to the Iris and Breast Cancer data with results in
- K. Xu, Z. Wang, P.-A. Heng, and K.-S. Leung, "Classification by nonlinear integral projections," IEEE Transactions on Fuzzy Systems, ol. 11, no. 2, pp. 187–2001, 2003

Method	Iris Data(%)	Breast Cancer Data(%)
Linear	2	29
Quadratic	2.7	34.4
Nearestneighbor	4	34
Bayes independent	6.7	28.2
Bayes quadratic	16	34.4
Neuronal net	3.3	28.5
PVM rule	4	22.9
QUAD	3.3	31.5
CLMS	4	27.1
HLMS	4.7	22.6
WCIPP	4	26.2
MCE	4	22.73

• But, sometimes numbers aren't enough

- Confidence is High
- IR sensor is Weak
- Mine location is Around (1.5, 3.7)
- Need Higher Order Constructs
 - Type II fuzzy sets and linguistic vectors
 - Fuzzy logic rules

The University of Missouri - Columbia

Story from the Local Newspaper

Doctors Make Decisions from This type of Information

Shouldn't Computers?

Facing up to flu season

As the American Lung Association kicks off a month-long flu campaign this week, predictions are the flu season will be especially severe this year. How to tell what ails you:

SYMPTOMS	COLD	FLU	PNEUMONIA
FEVER	rare	100.4°-104°, sudden onset, lasts 3-4 days	may or may not be high
ACHES/PAINS	slight	usual, often severe	occasional
FATIGUE/ WEAKNESS	quite mild	extreme	may occur
RUNNY/ Stuffy Nose	common	sometimes	not characteristic
SNEEZING	usual	sometimes	not characteristic
SORE THROAT	common	sometimes	not characteristic
CHEST PAIN, COUGH	mild to moderate	can become severe	frequent/ may be severe
		: Source: American Lu	ng Association

Linguistic Sensor Fusion

- What if Entities to be Fused Don't Lend Themselves to Numeric Representations?
 - Position Estimates Commonly Use Halos or Windows
 - Confidence May Not be Known Exactly
 - varies among classifiers/sensors
- Generalize These Values to Fuzzy Sets
 - Linguistic Vectors

- Generalize halos and confidence intervals

- So, How Do We Fuse Linguistic Vectors of Sensor Output?
- Both Position Confidence and Detection Confidence
- Extend the Choquet Integral to These Vectors
- Based on Extension Principle and Decomposition Theorem of Fuzzy Set Theory
 - Plus interval arithmetic if we use fuzzy numbers nice fuzzy subsets of reals

Background

• Extension Principle (How to extend functions from numbers to fuzzy sets)

$$\mu_{Z}(\mathbf{y}) = \sup_{\mathbf{x}_{1} \otimes \mathbf{x}_{2} = \mathbf{y}} \min(\mu_{A}(\mathbf{x}_{1}), \mu_{B}(\mathbf{x}_{2}))$$

• For fuzzy numbers (normal convex fuzzy subsets of the reals)

Use interval arithmetic and the decomposition theory:

$$A \otimes B = \bigcup_{\alpha \in [0,1]} [A \otimes B]_{\alpha}$$
$$= \bigcup_{\alpha \in [0,1]} [A]_{\alpha} \otimes [B]_{\alpha}$$

- Linguistic Vectors
 - Vectors of Non-interactive Fuzzy Numbers

- Extend regular Choquet integral to a linguistic Choquet fuzzy integral [Grabisch94b]:
- Let $h: X \rightarrow \Im([0, 1])$ where $\Im([0, 1])$ is a fuzzy power set of [0, 1], and

$$[\mathbf{h}_i]_{\alpha} = \left[\underline{[\mathbf{h}_i]_{\alpha}}, \overline{[\mathbf{h}_i]_{\alpha}}\right] \quad \text{for } 1 \le i \le n \text{ and } 0 \le \alpha \le 1.$$

• Then

$$\int_{c} \mathbf{h} \circ \mathbf{g} = \bigcup_{\alpha \in [0,1]} \left[\int_{c} \mathbf{h} \circ \mathbf{g} \right]_{\alpha}$$
where

$$\left[\int_{c} \mathbf{h} \circ \mathbf{g} \right]_{\alpha} = \left[\int_{c} \underline{[\mathbf{h}]_{\alpha}} \circ \mathbf{g}, \int_{c} \overline{[\mathbf{h}]_{\alpha}} \circ \mathbf{g} \right]$$

- How to Compute Densities? Two properties:
 - **Property 1.** The more uncertain a sensor is, the less important it is for the fusion
 - Property 2. The further away the sensor's detection location is from the true location in training data, the less important that sensor is for the fusion

- How to Compute Densities? Two properties:
 - **Property 1.** The more uncertain a sensor is, the less important it is for the fusion
 - Use U-uncertainty measure [Klir95] to compute density of fuzzy number A_i in a particular dimension.

$$g_{u}^{j} = 1 - \frac{\sum_{i=2}^{p} (\alpha_{i} - \alpha_{i+1}) \log_{2} \left| \left[A_{j} \right]_{\alpha_{i}} \right|}{\log_{2} \left(\sup \left(A_{j} \right) \right)}$$

Linguistic Choquet Fuzzy Integral

• **Property 2.** The further away the sensor's detection location is from the true location in training data, the less important that sensor is for the fusion

- Know that
$$\left\{ \left[A_j \right]_{\alpha_1} \subseteq \left[A_j \right]_{\alpha_2} \subseteq \cdots \subseteq \left[A_j \right]_{\alpha_p} \right\}$$

- The distance between $[A_j]_{\alpha_i}$ and $[\beta]_{\alpha_i}$ is $d_{A_j}(\alpha_i) = \max\left(\left| [A_j]_{\alpha_i} - \beta \right|, \left| [A_j]_{\alpha_i} - \beta \right| \right)$

– where β represents the actual location in a particular dimension

Linguistic Choquet Fuzzy Integral

• The densities of fuzzy number *j* in a particular dimension relating to the distance are:

$$g_{d}^{j} = \sum_{i=1}^{p} (\alpha_{i} - \alpha_{i+1}) P([A_{j}]_{\alpha_{i}})$$
 (Generalized Expected Value)

where

$$P\left(\left[A_{j}\right]_{\alpha_{i}}\right) = 1 - \frac{d_{A_{j}}(\alpha_{i})}{\sum_{k} d_{A_{k}}(\alpha_{i})}$$

• The final densities of fuzzy number A_j in a particular dimension relating to both properties are:

$$\mathbf{g}^j = \mathbf{g}^j_u \times \mathbf{g}^j_d$$

Linguistic Fusion of Real Algorithm Results

Linguistic Fusion Experiment

- Fuse the information from the Fuzzy ATR, the HMM and the CMSNN
 - Generated from GPR data at Aberdeen site
- Threshold confidences from three algorithms
- Use the centroid of each connected component to be the hit position (*x*,*y*)
- Fuzzify each dimension of each hit location:
 - 5x5 window with center at (x,y), average column-wise to get vector in along-track and average row-wise to get vector in cross-track
 - Build normal convex fuzzy sets for these vectors
- Build the mask with the center of mask at the current hit position
- Fuse locations inside the mask

Linguistic Fusion

- Build the confidence fuzzy number
 - Pick the maximum confidence *p* in corresponding 5x5 window
 - Compute standard deviation *std* of the confidence in that neighborhood

• Fuse confidences corresponding to the position linguistic vectors that are combined at a particular "position"

Linguistic Fusion

• Original confidence map from three algorithms on GPR data on Mine Lane collected at a US site

Fuzzy ATR

HMM

CMSNN

Linguistic Fusion

• After Thresholding: The Fuzzy ATR has 6 detections and 27 false alarms, The HMM has 5 detections and 10 false alarms, and The CMSNN has 6 detections and 6 false alarms

Fuzzy ATR

HMM

CMSNN

Linguistic Fusion

• After Fusion

After Thresholding: 6 detections and 2 false alarms

Before thresholding

After thresholding

Electrical and Computer Engineering

The University of Missouri - Columbia

Linguistic Fusion

• Example of false alarm eliminated by fusion

Position from Fuzzy ATR

Position from CMSNN

Position from HMM

Position fusion result

Electrical and Computer Engineering

The University of Missouri - Columbia

Linguistic Fusion

Confidence from CMSNN

Confidence fusion result

Linguistic Fusion

After multiplying the peak of confidence fusion with the membership of position fusion

Ň

Electrical and Computer Engineering The University of Missouri - Columbia

Linguistic Fusion

• Example of mine that fusion can detect while one algorithm cannot

Position from Fuzzy ATR

Position from HMM hit location at (38,419). Considered as noise by HMM when scoring because there are only 2 pixels above threshold.

Position from CMSNN

Linguistic Fusion

Position fusion result

Electrical and Computer Engineering

The University of Missouri - Columbia

Linguistic Fusion

Confidence from CMSNN

Confidence fusion result

Linguistic Fusion

After multiplying the peak of confidence fusion with the membership of position fusion

The University of Missouri - Columbia

Linguistic Fusion - The Payoff

• Run on ten lanes (16 passes) from US Army temperate site

Electrical and Computer Engineering

Predictive Sensor Fusion

- Two Questions:
 - Can we predict the value added by fusing multiple sensor system outputs together?
 - Can we specify the needed characteristics of a new sensor system to add to an existing suite to a gain a desired improvement in performance?
- Approach
 - Use Monte Carlo simulations based on actual data from 2 GPRs to study effect of adding a third senor

Experimental Setup

- Summary results from [Rotondo98] on the position accuracy of GPR detection systems for two contractors during the Advanced Technology Demonstrations at Aberdeen
 - We chose the on-road information generated at Aberdeen
 - The data is in terms of the position error over the lanes modeled by a gaussian density function.
 - Hence, we have the expected performance of these two sensor/algorithm suites in terms of mean and standard deviation of position error in two dimensions.

Predictive Fusion Experiment

- Chose position resolution from GPR on on-road generated at Aberdeen
- Generate error position (e_1, e_2) in along-track and cross-track
- Assume the actual location is (p_1, p_2) . The detection location is at $(p_1 + e_1, p_2 + e_2)$
- Fuzzify each dimension of each location using Guassian distributions, e.g., N(0.1,σ₁) or N(0.21, σ₁) etc.

Predictive Fusion Experiment

• An example of the linguistic position fusion of the 2 sensor systems

- Defuzzy each fuzzy number by picking the midpoint of the core. Also, compute the radius of the support to represent the width of that fuzzy number
- Generate 2000 trials according to a given Guassian distribution.
- Collect the error and width, then compute mean and standard deviation

Adding a "Third" System

• Changing error mean of hypothetical sensor system 3

Sensor	Along	g-track	Cross-track		
	Position resolution (mean(m),std (m))	Width (mean(m),std (m))	Position resolution (mean(m),std (m))	Width (mean(m),std(m))	
1	(0.1,0.12)	(0.12,0)	(-0.06,0.21)	(0.21,0)	
2	(-0.1,0.1)	(0.1,0)	(0.04,0.08)	(0.08,0)	
3	(<i>x</i> ,0.1)	(0.1,0)	(<i>x</i> ,0.1)	(0.1,0)	

Predictive Fusion Results

Fuzzy Logic Systems

- Rule-based approaches to combine evidence
- Rules used by "intelligent" systems may not contain PRECISE PREDICATES
- Propositions modeled via fuzzy set theory
 - Simple propositions, conjunctions, disjunctions, implication

• Rules of inference generalized to accommodate extensions from binary to continuous

Basic Configuration of a Fuzzy Logic Control System

Knowledge Base contains the Translations of Linguistic Propositions into Fuzzy Logic Constructs

• Simple Propositions

"X is A"

• Compound Propositions

Conjunctions: "X is A AND Y is B"

Disjunctions: "X is A OR Y is B"

Implications(Rules): "IF X is A THEN Y is B"

• Plus, current knowledge of system parameters and choices

Knowledge Base

• Propositions are modeled by Possibility Distributions

"Region is LONG" induces a fuzzy variable -LENGTH whose value is LONG

LONG is then described by a fuzzy set over an appropriate domain of discourse

Knowledge Base Compound Propositions

X is NOT A : Replace membership function with that of A^c $\mu_X(u) = \mu_{A^c}(u) \{= 1 - \mu_A(u)\}$

Conjunctions and Disjunctions (Induces fuzzy set on pair (X,Y)):

Use your favorite Intersection and Union Operator

X is A AND Y is B: $\mu(X,Y)(u,v) = \mu_A(u) \land \mu_B(v)$ X is A OR Y is B: $\mu(X,Y)(u,v) = \mu_A(u) \lor \mu_B(v)$

Knowledge Base Implication

Implication is more difficult: IF X is A THEN Y is B

From Classical Logic: "A implies B" equivalent to "Not A OR B"

Direct Translation:

$$\mu_{(\mathbf{X},\mathbf{Y})}(\mathbf{u},\mathbf{v}) = \mu_{\mathbf{A}^{\mathbf{c}}}(\mathbf{u}) \lor \mu_{\mathbf{B}}(\mathbf{v})$$
$$= (1 - \mu_{\mathbf{A}}(\mathbf{u})) \lor \mu_{\mathbf{B}}(\mathbf{v})$$
$$= (1 - \mu_{\mathbf{A}}(\mathbf{u}) + \mu_{\mathbf{B}}(\mathbf{v})) \land 1$$

compatible with Lukasiewicz multivalued logic

Knowledge Base Implication

There are many other translation schemes

Most Common for Control:

Correlation Min: $\mu_{(X,Y)}(u,v) = \mu_A(u) \wedge \mu_B(v)$ Correlation Product: $\mu_{(X,Y)}(u,v) = \mu_A(u) \times \mu_B(v)$

Why? Because they are Simple and Fast!

Fuzzy Logic Inference

- So, Now You've Got
 - P1: IF X is A Then Y is B
 - P2: X is A'
- Want to Derive Value for Y: (Y is B')

Generalized Modus Ponens

Actually, Many Ways to Do This

• Interesting to Note that if all Domains are finite, this looks like Matrix-Vector Multiplication with Sum replaced by Union and Product Replaced by Intersection

Ingredients of a Fuzzy Logic System

- Linguistic Variables: Angle, ∆angle, GPR Confidence, Aspect Ratio, etc.
 - Problem Dependent
- Membership Functions to Model the Meaning of Variable Values

More Ingredients

- Add a cup full of rules (the more the merrier)
- IF
 GPR peak strength is MEDIUM
 AND

 GPR confidence is LOW
 AND

 ASPECT RATIO of the IR is NOT_MINE_LIKE

 THEN

 Output
 - **Overall_Target_Confidence** is *LOW*
- IFGPR peak strength is HIGHANDGPR confidence is MEDIUMANDASPECT RATIO of the IR is MEDIUM_MINE_LIKETHENOverall Target Confidence is RATHER HIGH

How's Inference Really Done?

- All Rules Fire to Some Degree Produce Output Fuzzy Sets
- Output Fuzzy Sets Are "Aggregated" Usually Added; Sometimes Maxed
- Output Value is Computed From All Outputs Defuzzification (UGH!!!!)

Š

Electrical and Computer Engineering The University of Missouri - Columbia

Example - Describing a GPR Signature Plastic Mine

LEADING & TRAILING EDGES

ENERGY

RAW GPR

Example - Describing a GPR Signature

R1:	If	Energy is	HIGH	AND			
		Leading Edge is	STRONG	AND			
		Trailing Edge is	STRONG				
	THEN						
		Mine Confidence	is <mark>HIGH</mark>				
R2:	If	Energy is	HIGH	AND			
		Leading Edge is	MEDIUM	AND			
		Trailing Edge is STRONG					
	THEN						
		Mine Confidenc	e is MEDIUM				
R3:	If	Energy is	HIGH	AND			
		Leading Edge is	WEAK	AND			
		Trailing Edge is WEAK					
	THEN						
		Mine Confidence is LOW					

Example - Describing a GPR Signature Clutter

Fuzzy Rule Bases for Image Processing

Rules use Pixel Neighborhood Characteristics to "select" strength of different enhancement/smoothing operators in combination

Original (with Noise)

Median Filter

Fuzzy Rule Base

Which one do you like best?

Lena

Median

Saint-Marc

Fuzzy Rules

Information Fusion

Fusing Outputs of Multiple Algorithms on GPR Bruce Nelson of Geo-Centers Made the Rule Base

Multiple Algorithm Fusion Results for Blind Tests

- Fuzzy Integrals and Fuzzy Logic Rule Base
 - Developed on Signature Library
 - Fused confidence outputs from several sources
 - (3 primary detectors and 2 secondary algorithms)
- Taken to the field with Geo-Centers Mobile Landmine Detection System
- Target Reports submitted to US Army

Information Fusion - Rule Base

Joint with Bruce Nelson - GeoCenters

Image: Constant of the system Constant of the system <thconsystem< th=""> Constant of the system</thconsystem<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
3 L L L L 4 L L L L 5 L L L L 6 L H M ML	
4 L L L L 5 L L L L L 6 L H M M ML	
5 L L L L 6 L H M ML ML	
6 L H M M	
7 M H M L ML	
8 L M ML	
9 L H ML	
10 L L ML	
L L ML	
12 L L ML	
13 L L L ML	
L 14 L L L L ML	
15 L L L ML	
16 M H M	
17 M M M	
18 L L ML	
19 M M H L M	
20 M H M L M	
21 H M M L M	
22 M L MH	
23 H H H MH	
24 Н Н Н МН	
25 Н Н Н МН	
26 Н Н Н МН	
27 H L MH	
28 H M MH	
29 H H L MH	
30 H H L MH	
31 H H L H	
32 H H H H H	
33 M H L M ML	

Blind Test Results at U.S. Army Site

Blind Test Results (Scored by U.S. Army)

Method	Fuzzy Rules		Choquet Integal		Sugeno Integral	
	PD	FAR	PD	FAR	PD	FAR
AVERAGE	75%	0.05	74%	0.06	71%	0.06
MEDIAN	73%	0.05	75%	0.06	74%	0.06
AVERAGE	94%	0.03	93%	0.01	93%	0.02
MEDIAN	93%	0.03	91%	0.01	92%	0.02
AVERAGE	83%	0.03	77%	0.02	80%	0.02
MEDIAN	82%	0.02	77%	0.02	82%	0.02
AVERAGE	83%	0.04	80%	0.04	80%	0.04
MEDIAN	86%	0.03	78%	0.02	82%	0.02
	Method AVERAGE MEDIAN AVERAGE AVERAGE MEDIAN AVERAGE MEDIAN	MethodFuzzyAVERAGEPD 75% 73%AVERAGE94% 93%AVERAGE83% 82%AVERAGE83% 82%	Method Fuzzy Rules AVERAGE PD FAR 75% 0.05 MEDIAN 73% 0.03 AVERAGE 94% 0.03 MEDIAN 93% 0.03 AVERAGE 83% 0.03 AVERAGE 83% 0.04 MEDIAN 86% 0.03	Method Fuzzy Rules Choque AVERAGE PD FAR PD 75% 0.05 74% 0.05 75% 0.05 74% AVERAGE 94% 0.03 93% AVERAGE 83% 0.03 91% AVERAGE 83% 0.03 77% AVERAGE 83% 0.04 80% MEDIAN 86% 0.03 78%	Method Fuzzy Rules Choquet Integal AVERAGE PD FAR PD FAR 0.05 74% 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.02	Method Fuzzy Rules Choquet Integal Sugeno AVERAGE PD 75% FAR 0.05 PD 74% FAR 0.06 PD 71% AVERAGE 94% 0.03 93% 0.01 93% AVERAGE 94% 0.03 91% 0.01 93% AVERAGE 83% 0.03 77% 0.02 80% AVERAGE 83% 0.04 80% 0.04 80%

Conclusions

Fuzzy Set Theory and Fuzzy Logic are serious tools for complex, ill-defined decision making problems like fusion

Not competitive, but complementary to traditional methods

Many Open Questions Good for research activities

Keep an open mind -- Need a Big Bag of Tools

Have Fun!