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A Brief Tour of Evolutionary A Brief Tour of Evolutionary 
ComputationComputation

Evolutionary computation:Evolutionary computation: Machine learning Machine learning 
optimization and classification paradigms roughly optimization and classification paradigms roughly 
based on mechanisms of evolution such as biological based on mechanisms of evolution such as biological 
genetics and natural selectiongenetics and natural selection



Features of Evolutionary Computation Features of Evolutionary Computation 
(EC) Paradigms(EC) Paradigms

EC paradigms utilize a population of points (potential EC paradigms utilize a population of points (potential 
solutions) in their searchsolutions) in their search
EC paradigms use direct EC paradigms use direct ““fitnessfitness”” information instead of information instead of 
function derivatives or other related knowledgefunction derivatives or other related knowledge
EC paradigms use probabilistic, rather than EC paradigms use probabilistic, rather than 
deterministic, transition rulesdeterministic, transition rules



Evolutionary Computation AlgorithmsEvolutionary Computation Algorithms

1.  Initialize the population1.  Initialize the population

2.  Calculate the fitness of each individual in the 2.  Calculate the fitness of each individual in the 
populationpopulation

3.  Reproduce selected individuals to form a new 3.  Reproduce selected individuals to form a new 
populationpopulation

4.  Perform evolutionary operations such as crossover and 4.  Perform evolutionary operations such as crossover and 
mutation on the populationmutation on the population

5.  Loop to step 2 until some condition is met5.  Loop to step 2 until some condition is met



Evolutionary Computation ParadigmsEvolutionary Computation Paradigms

Genetic algorithms (Genetic algorithms (GAsGAs) ) -- John HollandJohn Holland
Evolutionary programming (EP) Evolutionary programming (EP) -- Larry FogelLarry Fogel
Evolution strategies (ES) Evolution strategies (ES) -- I. I. RechenbergRechenberg
Genetic programming (GP) Genetic programming (GP) -- John John KozaKoza
Particle swarm optimization (PSO) Particle swarm optimization (PSO) -- Kennedy & EberhartKennedy & Eberhart



SWARMS

Coherence without
choreography

Bonabeau, Millonas,
J.-L. Deneubourg,  Langton,
etc.

Particle swarms
(physical position not a factor)



Intelligent SwarmIntelligent Swarm

A population of interacting individuals that optimizes A population of interacting individuals that optimizes 
a function or goal by collectively adapting to the local a function or goal by collectively adapting to the local 
and/or global environmentand/or global environment
Swarm intelligence Swarm intelligence ≅≅ collective adaptationcollective adaptation



Basic Principles of Swarm IntelligenceBasic Principles of Swarm Intelligence
(Mark (Mark MillonasMillonas, Santa Fe Institute), Santa Fe Institute)

Proximity principle:  the population should be able to Proximity principle:  the population should be able to 
carry out simple space and time computationscarry out simple space and time computations
Quality principle: the population should be able to Quality principle: the population should be able to 
respond to quality factors in the environmentrespond to quality factors in the environment
Diverse response principle:  the population should not Diverse response principle:  the population should not 
commit its activities along excessively narrow channelscommit its activities along excessively narrow channels
Stability principle:  the population should not change its Stability principle:  the population should not change its 
mode of behavior every time the environment changesmode of behavior every time the environment changes
AdapabilityAdapability principle:  the population must be able to principle:  the population must be able to 
change behavior mode when itchange behavior mode when it’’s worth the computational s worth the computational 
priceprice



Introduction to Particle Swarm Introduction to Particle Swarm 
OptimizationOptimization

A A ““swarmswarm”” is an apparently disorganized collection is an apparently disorganized collection 
(population) of moving individuals that tend to cluster (population) of moving individuals that tend to cluster 
together while each individual seems to be moving in together while each individual seems to be moving in 
a random directiona random direction
We also use We also use ““swarmswarm”” to describe a certain family of to describe a certain family of 
social processessocial processes



Introduction to Particle Swarm Introduction to Particle Swarm 
Optimization (PSO), ContinuedOptimization (PSO), Continued

A concept for optimizing nonlinear functionsA concept for optimizing nonlinear functions
Has roots in artificial life and evolutionary computationHas roots in artificial life and evolutionary computation
Developed by Kennedy and Eberhart (1995)Developed by Kennedy and Eberhart (1995)
Simple in conceptSimple in concept
Easy to implementEasy to implement
Computationally efficientComputationally efficient
Effective on a variety of problemsEffective on a variety of problems



Flocks, Herds, 
and Schools

•Heppner & Grenander
•Craig Reynolds

•Steer toward the center
•Match neighbors’ velocity
•Avoid collisions
•(Seek roost)



Evolution of PSO Concept and Evolution of PSO Concept and 
ParadigmParadigm

Discovered through simplified social model simulationDiscovered through simplified social model simulation
Related to bird flocking, fish schooling, and swarming Related to bird flocking, fish schooling, and swarming 
theorytheory
Related to evolutionary computation; some similarities to Related to evolutionary computation; some similarities to 
genetic algorithms and evolution strategiesgenetic algorithms and evolution strategies
Kennedy developed the Kennedy developed the ““cornfield vectorcornfield vector”” for birds for birds 
seeking foodseeking food
Bird flock became a swarmBird flock became a swarm
Expanded to multidimensional searchExpanded to multidimensional search
Incorporated acceleration by distanceIncorporated acceleration by distance
Paradigm simplifiedParadigm simplified



Features of Particle Swarm Features of Particle Swarm 
OptmizationOptmization

Population initialized by assigning random positions Population initialized by assigning random positions andand
velocities; potential solutions are then velocities; potential solutions are then flownflown through through 
hyperspace.hyperspace.
Each particle keeps track of its Each particle keeps track of its ““bestbest”” (highest fitness) (highest fitness) 
position in hyperspace.position in hyperspace.

This is called This is called ““pbestpbest”” for an individual particlefor an individual particle
It is called It is called ““gbestgbest”” for the best in the populationfor the best in the population
It is called It is called ““lbestlbest”” for the best in a defined neighborhoodfor the best in a defined neighborhood

At each time step, each particle stochastically At each time step, each particle stochastically 
accelerates toward its accelerates toward its pbestpbest and and gbestgbest (or (or lbestlbest).).



Particle Swarm Optimization ProcessParticle Swarm Optimization Process

1. 1. Initialize population in hyperspace.Initialize population in hyperspace.
2.  Evaluate  fitness of individual particles.2.  Evaluate  fitness of individual particles.
3.  Modify velocities based on previous best and global 3.  Modify velocities based on previous best and global 

(or neighborhood) best.(or neighborhood) best.
4.  Terminate on some condition.4.  Terminate on some condition.
5.  Go to step 2.5.  Go to step 2.



PSO Velocity Update EquationsPSO Velocity Update Equations

Global version:Global version:
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Where d  is the dimension, c1 and c2 are positive constants, 
rand and Rand are random functions, and w is the inertia 
weight.

For neighborhood version, change pgd to pld.



Further Details of PSOFurther Details of PSO

Performance of each particle measured according to a Performance of each particle measured according to a 
predefined fitness function.predefined fitness function.
Inertia weight influences tradeoff between global and Inertia weight influences tradeoff between global and 
local exploration.local exploration.
Good approach is to reduce inertia weight during run Good approach is to reduce inertia weight during run 
(i.e., from 0.9 to 0.4 over 1000 generations)(i.e., from 0.9 to 0.4 over 1000 generations)
Usually set Usually set cc11 and and cc22 to 2to 2
Usually set maximum velocity to dynamic range of Usually set maximum velocity to dynamic range of 
variablevariable



PSO Adherence to Swarm Intelligence PSO Adherence to Swarm Intelligence 
PrinciplesPrinciples

Proximity:  Proximity:  nn--dimensional space calculations carried out dimensional space calculations carried out 
over series of time stepsover series of time steps
Quality:  population responds to quality factors Quality:  population responds to quality factors pbestpbest
andand gbestgbest (or (or lbestlbest ))
Stability:  population changes state only when Stability:  population changes state only when gbestgbest (or (or 
lbestlbest ) changes) changes
Adaptability:  population Adaptability:  population does does change state when change state when gbestgbest
(or (or lbestlbest ) changes) changes



Benchmark TestsBenchmark Tests

De De JongJong’’ss test settest set
SchafferSchaffer’’s F6 functions F6 function
Evolve neural network weightsEvolve neural network weights

Iris data setIris data set
Electric vehicle state of charge systemElectric vehicle state of charge system

Over 20 other benchmark functions testedOver 20 other benchmark functions tested



Evolving Fuzzy SystemsEvolving Fuzzy Systems

Develop (evolve) fuzzy expert systems using Develop (evolve) fuzzy expert systems using 
evolutionary algorithms such as GA or PSOevolutionary algorithms such as GA or PSO

Evolve rulesEvolve rules
Evolve membership function typesEvolve membership function types
Evolve membership function locationsEvolve membership function locations

In turn, adapt parameters of the EA using fuzzy rulesIn turn, adapt parameters of the EA using fuzzy rules
For example: For example: ““If variance of fitness is low, set mutation rate highIf variance of fitness is low, set mutation rate high””



Journal PaperJournal Paper

““Implementation of Evolutionary Fuzzy SystemsImplementation of Evolutionary Fuzzy Systems””
Authors:  Shi, Eberhart, ChenAuthors:  Shi, Eberhart, Chen
IEEE  Transactions on Fuzzy SystemsIEEE  Transactions on Fuzzy Systems
April 1999April 1999



Evolving Artificial Neural Networks: OutlineEvolving Artificial Neural Networks: Outline

IntroductionIntroduction
Definitions and review of previous workDefinitions and review of previous work
Advantages and disadvantages of previous Advantages and disadvantages of previous 
approachesapproaches
Using particle swarm optimization (PSO)Using particle swarm optimization (PSO)
An example applicationAn example application
ConclusionsConclusions



IntroductionIntroduction

Neural networks are very good at some problems, Neural networks are very good at some problems, 
such as mapping input vectors to outputssuch as mapping input vectors to outputs
Evolutionary algorithms are very good at other Evolutionary algorithms are very good at other 
problems, such as optimizationproblems, such as optimization
Hybrid tools are possible that are better than either Hybrid tools are possible that are better than either 
approach by itselfapproach by itself
Review articles on evolving neural networks: Review articles on evolving neural networks: 
Schaffer, Whitley, and Schaffer, Whitley, and EshelmanEshelman (1992); Yao (1995); (1992); Yao (1995); 
and Fogel (1998)and Fogel (1998)
Evolutionary algorithms usually used to evolve Evolutionary algorithms usually used to evolve 
network weights, but sometimes used to evolve network weights, but sometimes used to evolve 
structures and/or learning algorithms structures and/or learning algorithms 



Evolving Neural Networks with Particle Evolving Neural Networks with Particle 
Swarm OptimizationSwarm Optimization

Evolve neural network capable of being universal Evolve neural network capable of being universal 
approximator, such as backpropagation or radial basis approximator, such as backpropagation or radial basis 
function network.function network.
In backpropagation, most common PE transfer function In backpropagation, most common PE transfer function 
is sigmoidal function:  is sigmoidal function:  output = 1/(1 + eoutput = 1/(1 + e -- inputinput ))
Eberhart, Dobbins, and Simpson (1996) first used PSO Eberhart, Dobbins, and Simpson (1996) first used PSO 
to evolve network weights (replaced backpropagation to evolve network weights (replaced backpropagation 
learning algorithm)learning algorithm)
PSO can also be used to indirectly evolve the structure PSO can also be used to indirectly evolve the structure 
of a network.  An added benefit is that the preprocessing of a network.  An added benefit is that the preprocessing 
of input data is made unnecessary.of input data is made unnecessary.



Evolving Neural Networks with Particle Evolving Neural Networks with Particle 
Swarm Optimization, ContinuedSwarm Optimization, Continued

Evolve both the network weights Evolve both the network weights andand the slopes of the slopes of 
sigmoidal transfer functions of hidden and output sigmoidal transfer functions of hidden and output PEsPEs..

If transfer function now is:  If transfer function now is:  output =  1/(1 + eoutput =  1/(1 + e --k*inputk*input ) ) 
then we are evolving then we are evolving k k in addition to evolving the in addition to evolving the 
weights.weights.
The method is general, and can be applied to other The method is general, and can be applied to other 
topologies and other transfer functions.topologies and other transfer functions.
Flexibility is gained by allowing slopes to be positive or Flexibility is gained by allowing slopes to be positive or 
negative.  A change in sign for the slope is equivalent to negative.  A change in sign for the slope is equivalent to 
a change in signs of all input weights.a change in signs of all input weights.



Evolving the Network Structure with Evolving the Network Structure with 
PSOPSO

If evolved slope is sufficiently small, sigmoidal output can If evolved slope is sufficiently small, sigmoidal output can 
be clamped to 0.5, and hidden PE can be removed.  be clamped to 0.5, and hidden PE can be removed.  
Weights from bias PE to each PE in next layer are Weights from bias PE to each PE in next layer are 
increased by oneincreased by one--half the value of the weight from the half the value of the weight from the 
PE being removed to the nextPE being removed to the next--layer PE.  layer PE.  PEsPEs are thus are thus 
pruned, reducing network complexity.pruned, reducing network complexity.
If evolved slope is sufficiently high, sigmoid transfer If evolved slope is sufficiently high, sigmoid transfer 
function can be replaced by step transfer function.  This function can be replaced by step transfer function.  This 
works with large negative or positive slopes.  Network works with large negative or positive slopes.  Network 
computational complexity is thus reduced.computational complexity is thus reduced.



Evolving the Network Structure with Evolving the Network Structure with 
PSO, ContinuedPSO, Continued

Since slopes can evolve to large values, input Since slopes can evolve to large values, input 
normalization is generally not needed.  This normalization is generally not needed.  This 
simplifies applications process and shortens simplifies applications process and shortens 
development time.development time.
The PSO process is continuous, so neural The PSO process is continuous, so neural 
network evolution is also continuous.  No network evolution is also continuous.  No 
sudden discontinuities exist such as those sudden discontinuities exist such as those 
that plague other approaches.that plague other approaches.
This approach is now protected by a U. S. This approach is now protected by a U. S. 
PatentPatent



Tracking and Optimizing Dynamic Tracking and Optimizing Dynamic 
Systems with Particle SwarmsSystems with Particle Swarms

Acknowledge:Acknowledge:
Yuhui Shi and Xiaohui HuYuhui Shi and Xiaohui Hu
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Practical application requirementsPractical application requirements
Previous workPrevious work
Experimental designExperimental design
ResultsResults
Conclusions and future effortConclusions and future effort



Original Version with Inertia WeightOriginal Version with Inertia Weight
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Where d  is the dimension, c1 and c2 are positive constants, 
rand and Rand are random functions, and w is the inertia 
weight.    For neighborhood version, change pgd to pld.



Constriction Factor VersionConstriction Factor Version
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Dynamic System TypesDynamic System Types

Location of optimum value can changeLocation of optimum value can change
Optimum value can varyOptimum value can vary
Number of optima can changeNumber of optima can change
Combinations of the above can occurCombinations of the above can occur

In this project, we varied the location of the 
optimum.



Practical Application RequirementsPractical Application Requirements

Few practical problems are static; most are dynamicFew practical problems are static; most are dynamic
Most time is spent reMost time is spent re--optimizing (reoptimizing (re--scheduling, etc.)scheduling, etc.)
Many systems involve machines and peopleMany systems involve machines and people

These systems have inertiaThese systems have inertia
1010--100 seconds often available for re100 seconds often available for re--optimizationoptimization

EberhartEberhart’’ss Law of Sufficiency applies:  If the solution is Law of Sufficiency applies:  If the solution is 
good enough, fast enough, and cheap enough, then it is good enough, fast enough, and cheap enough, then it is 
sufficientsufficient



Previous WorkPrevious Work

Testing Parabolic Function Testing Parabolic Function 

Offset = offset + severityOffset = offset + severity
Severity 0.01, .1, .5Severity 0.01, .1, .5
2000 evaluations per change2000 evaluations per change
3 dimensions, dynamic range 3 dimensions, dynamic range ––50 to +5050 to +50
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Previous Work: ReferencesPrevious Work: References

Angeline, P.J. (1997) Tracking Angeline, P.J. (1997) Tracking extremaextrema in dynamic in dynamic 
environments.  environments.  Proc. Proc. EvolEvol. Programming VI. Programming VI, , 
Indianapolis, IN,  Berlin: SpringerIndianapolis, IN,  Berlin: Springer--VerlagVerlag, pp. 335, pp. 335--345345
BBääckck, T. (1998).  On the behavior of evolutionary , T. (1998).  On the behavior of evolutionary 
algorithms in dynamic environments.  algorithms in dynamic environments.  Proc. Int. Conf. on Proc. Int. Conf. on 
EvolEvol. Computation. Computation, Anchorage, AK.  Piscataway, NJ: , Anchorage, AK.  Piscataway, NJ: 
IEEE Press, pp. 446IEEE Press, pp. 446--451451



Experimental DesignExperimental Design

Two possibilities with swarmTwo possibilities with swarm
Continue on from where we wereContinue on from where we were
ReRe--initialize the swarminitialize the swarm

Inertia weight of [0.5+(Rnd/2.0)] usedInertia weight of [0.5+(Rnd/2.0)] used
20 particles; update interval of 100 generations20 particles; update interval of 100 generations
When change occurred:When change occurred:

Retained the position of each particleRetained the position of each particle
Reset values of Reset values of pbestpbest (also of (also of gbestgbest))



PSO average best over all runsPSO average best over all runs
Severity = 0.5Severity = 0.5
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PSO average best over all runsPSO average best over all runs
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PSO average best over all runsPSO average best over all runs
Severity = 0.1Severity = 0.1
10 dimensions10 dimensions
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PSO average best over all runsPSO average best over all runs
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PSO average best over all runsPSO average best over all runs
Severity = 1.0Severity = 1.0
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Comparison of Results:Comparison of Results:
Error Values Obtained in 2000 EvaluationsError Values Obtained in 2000 Evaluations

Severity 0.1Severity 0.1 Severity 0.5Severity 0.5

AngelineAngeline 5x105x10--44 –– 1010--33 0.010.01--0.100.10

BBääckck 2x102x10--55 1010--33

Eberhart & Eberhart & 
ShiShi

1010--1010 -- 1010--99 1010--99 –– 1010--88



Conclusions and Future EffortsConclusions and Future Efforts

Our results, including those in 10 dimensions and Our results, including those in 10 dimensions and 
with severity = 1, are promisingwith severity = 1, are promising
We are applying approach to other benchmark We are applying approach to other benchmark 
functions, and to practical logistics applicationsfunctions, and to practical logistics applications



FIPS
“Fully Informed Particle Swarm” (Rui Mendes)

Distributes total φ across n terms

vxx
N

xpU
vv

iii

i

N i

n i

innbr
i

ρρρ

ρρ
ρρ

+←

=
← ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑

−⊗
+

1

)( )(),0( ϕ
χ

Best neighbor is not selected
Individual not included in neighborhood
Dependent on topology



FIPS Results
Two performance metrics

Red: Topologies with average degree in the interval (4, 4.25).

Green: Topologies with average degree in the interval (3, 3.25) and clustering coefficient in the interval (0.1, 0.6).

Blue: Topologies with average degree in the interval (3, 3.25) and clustering coefficient in the interval (0.7, 0.9).

Light Blue; Topologies with average degree in the interval (5, 6) and clustering  coe c ient in the interval (0.025, 0.4).

Black: All other topologies.



Example Application:Example Application:
Reactive Power and Voltage ControlReactive Power and Voltage Control

Japanese electric utilityJapanese electric utility
PSO used to determine control strategyPSO used to determine control strategy

Continuous and discrete control variablesContinuous and discrete control variables
Hybrid binary/realHybrid binary/real--valued version of PSO developedvalued version of PSO developed
System voltage stability achieved using a System voltage stability achieved using a 
continuation power flow techniquecontinuation power flow technique



• Objective - develop planning and scheduling algorithm for 
fully integrated automated container terminals

• Approach - Fuzzy system and evolutionary programming

evolutionary
programming

fuzzy reasoning

facility state

Scheduling System for Integrated Scheduling System for Integrated 
Automated Container TerminalAutomated Container Terminal



Yard Planning

Container Sequence
Planning

Machine Planning
Machines

Machine
Worklists

Container
Reservations

Container
Yard

Machine Operations

Container
Locations

Scheduling System for IACT Scheduling System for IACT –– WorkflowWorkflow



Container  Planning SequencesContainer  Planning Sequences

500500 ContainersContainers
Move from yard to Move from yard to 
staging area along the staging area along the 
berthberth
Planning resultsPlanning results
Number of movements:Number of movements:



More Examples of Recent ApplicationsMore Examples of Recent Applications

Scheduling (Marine Corps logistics)Scheduling (Marine Corps logistics)
Manufacturing (Product content combination Manufacturing (Product content combination 
optimization)optimization)
Figure of merit for electric vehicle battery packFigure of merit for electric vehicle battery pack
Medical analysis/diagnosis (ParkinsonMedical analysis/diagnosis (Parkinson’’s s 
disease and essential tremor)disease and essential tremor)
Human performance prediction (cognitive and Human performance prediction (cognitive and 
physical)physical)



Original BookOriginal Book

Title:  Title:  Computational Intelligence PC Computational Intelligence PC 
ToolsTools
Authors:  Eberhart, Dobbins, and Authors:  Eberhart, Dobbins, and 
SimpsonSimpson
Publisher:  Academic PressPublisher:  Academic Press
Year published:  1996Year published:  1996



Recent BookRecent Book

Title:  Title:  Swarm IntelligenceSwarm Intelligence
Authors:  Kennedy, Eberhart and ShiAuthors:  Kennedy, Eberhart and Shi
Publisher:  Morgan Kaufmann division Publisher:  Morgan Kaufmann division 
of Academic Pressof Academic Press
Publication date:  2001Publication date:  2001
Second edition 2008?Second edition 2008?



New BookNew Book

Computational Intelligence: Concepts to Computational Intelligence: Concepts to 
Implementations, Eberhart and Shi, Implementations, Eberhart and Shi, 
Morgan Kauffman, 2007.Morgan Kauffman, 2007.
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