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The fractional jet ownership industry
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NetJets Inc. 
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Planning for a risky world

Weather
• Robust design of emergency response networks.

• Design of financial instruments to hedge against weather 
emergencies to protect individuals, companies and 
municipalities.

• Design of sensor networks and communication systems to 
manage responses to major weather events.

Disease
• Models of disease propagation for response planning.

• Management of medical personnel, equipment and 
vaccines to respond to a disease outbreak.

• Robust design of supply chains to mitigate the disruption of 
transportation systems.
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Blood management
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Managing financial portfolios

Money can be invested and then reinvested….



© 2007 Warren B. Powell Slide 12

Energy management

Applications
• Jet fuel hedging – Designing strategies to hedge against 

fluctuations in jet fuel (and other commodities).

• Valuing energy contracts

• Planning the use of future technologies

• R&D portfolio management

Research in ADP
• Convergence proofs

• Rate of convergence research

• Design and evaluation of approximation strategies

• Design of advanced approximation strategies
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Challenges

Real-time control
» Scheduling aircraft, pilots, generators, tankers
» Pricing stocks, options

Near-term tactical planning
» Can I accept a customer request?
» Should I lease equipment?
» Do I have to purchase extra energy?

Strategic planning
» What is the right equipment mix?
» What is the value of this contract?
» What is the value of more reliable aircraft?
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Outline
The languages of dynamic programming
A resource allocation model
The post-decision state variable
Example: A discrete resource: the nomadic trucker
The states of our system
Example: A continuous resource: blood inventory 
management
Approximation methods
» Lookup tables and aggregation
» Basis functions

Stepsizes
Exploration vs. exploitation
Applications
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Languages

The languages of “optimization over time”

Engineering OR/AI/Probability OR/Math programming

Discipline
Optimal 
control

Markov decision 
processes

Stochastic 
programming

Decision (English) Control Action Decision
Decision (math) u a x
"Value function" (English) Cost-to-go Value function Recourse function
"Value function" (Math) J V Q
State variable x S Huh? (oh, "tenders")
Optimality equations Hamilton-Jacobi Bellman Huh?
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Languages

“Approximate dynamic programming” has been 
discovered independently by different 
communities under different names:
» Neuro-dynamic programming
» Reinforcement learning
» Forward dynamic programming
» Adaptive dynamic programming
» Heuristic dynamic programming
» Iterative dynamic programming
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Languages

How to land a plane:

» Control: angle, velocity, acceleration, pitch, yaw…
» Noise: wind, measurement

( )( ) max ( , ) ( )V x C x u EV x= + 1 1t t u t t t t+ +



© 2007 Warren B. Powell Slide 19

Where to send a plane:

» Control: Where to send the plane to accomplish a goal.
» Noise: demands on the system, equipment failures.

( )1 1( ) max ( , ) ( )t t a t t t tV S C S a EV S+ += +

Languages
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Languages

How to manage a fleet of aircraft:

» Control: Which plane to assign to each customer.
» Noise: demands on the system, equipment failures.

( )1 1( ) max ( , ) ( )t t x t t t tV S C S x EV S+ += +
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A progression of models

Major problem classes

Simple attributes Complex 
attributes

Single entity Textbook Markov 
decision process

Classical AI 
applications

Multiple entities Classical OR 
applications

Opportunity for 
combining 

AI/OR
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Sample applications

Single entity problems
» Playing a board game
» Routing a truck around the country
» Planning a set of courses through college

Storage problems (single resource class)
» Maintaining product inventories
» Purchasing commodity futures (oil, orange juice, …)

Managing multiple resource classes
» Blood inventories
» Fleet management (with different equipment types)

Managing multiple, discrete resources
» Locomotives, jets, people



© 2007 Warren B. Powell Slide 23

Single entity problems
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Single entity problems
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Single entity problems
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Single entity problems
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Single entity problems
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Asset acquisition problems

Storage problems
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Multiple inventory types 

Managing blood inventories
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Multiple inventory types 

Managing blood inventories over time

Week 0 Week 1 Week 2
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Schneider National
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Multiple discrete assets

t t+1 t+2
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Outline
The languages of dynamic programming
A resource allocation model
The post-decision state variable
Example: A discrete resource: the nomadic trucker
The states of our system
Example: A continuous resource: blood inventory 
management
Approximation methods
» Lookup tables and aggregation
» Basis functions

Stepsizes
Exploration vs. exploitation
Applications
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A resource allocation model

Modeling resources:
» The state of a single resource:

» The state of multiple resources:

» The information process:

The attributes of a single resource
    The attribute space

a
a
=
∈A

ˆ The change in the number of resources with 
   attribute .

taR
a

=

( )
The number of resources with attribute 

   The resource state vector
ta

t ta a

R a

R R
∈

=

=
A
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A resource allocation model

Modeling demands:
» The attributes of a single demand:

» The demand state vector:

» The information process:

The attributes of a demand to be served.
    The attribute space

b
b
=
∈B

( )
The number of demands with attribute 

   The demand state vector
tb

t tb b

D b

D D
∈

=

=
B

ˆ The change in the number of demands with
   attribute .

tbD
b

=
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A resource allocation model

The system:
» The state vector

» The information process:

( ),t t tS R D=

( )
Exogenous changes to resources and demands
垐,

t

t t

W

R D

=

=
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A resource allocation model

The three states of our system
» The state of a single resource/entity

» The resource state vector

» The system state vector

1

2

3

t

t t

t

a
a a

a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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ta

t ta

ta

R

R R

R
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( ),t t tS R D=
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A resource allocation model

DemandsResources
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A resource allocation model

t t+1 t+2
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A resource allocation model

t t+1 t+2

Optimizing at a point in time

Optimizing over time
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Outline
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A resource allocation model
The post-decision state variable
Example: A discrete resource: the nomadic trucker
The states of our system
Example: A continuous resource: blood inventory 
management
Approximation methods
» Lookup tables and aggregation
» Basis functions

Stepsizes
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Applications
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Laying the foundation

Dynamic programming review:
» Let:

» We model system dynamics using:

           "State" of our "system" at time t.
           "Action" that we take to change the system.

( , ) Contribution earned when we take action  from state .

t

t

t t t

S
x

C S x x S

=
=

=

1

1

     ( | , ) Probability that action  takes us from 
                              state  to state 

t t t t

t t

p S S x x
S S

+

+

=
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Laying the foundation

Bellman’s equation:
» Standard form:

» Expectation form:

1 1
'

( ) max ( , ) ( ' | , ) ( ')   t t x t t t t t t t
s

V S C S x p s S x V S s+ +
⎛ ⎞= + =⎜ ⎟
⎝ ⎠

∑

( ){ }( )1 1( ) max ( , ) ( , ) |  t t x t t t t t t t tV S C S x E V S S x S+ += +
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Bellman’s equation

We just solved Bellman’s equation:

» We found the value of being in each state by stepping 
backward through the tree.

{ }1 1( ) max ( , ) ( ) |t t t t t t t tx
V S C S x E V S S+ +∈

= +
X
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Bellman’s equation

The challenge of dynamic programming:

Problem: Curse of dimensionality

{ }( )1 1( ) max ( , ) ( ) |t t t t t t t tx
V S C S x E V S S+ +∈

= +
X
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The curses of dimensionality

What happens if we apply this idea to 
our blood problem?
» State variable is:

• The supply of each type of blood, along 
with its age

– 8 blood types
– 6 ages
– = 48 “blood types”

• The demand for each type of blood
– 8 blood types

» Decision variable is how much of 48 
blood types to supply to 8 demand types.

• 216- dimensional decision vector
» Random information

• Blood donations by week (8 types)
• New demands for blood (8 types)
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The curses of dimensionality

The challenge of dynamic programming:

Problem: Curse of dimensionality

{ }( )1 1( ) max ( , ) ( ) |t t t t t t t tx
V S C S x E V S S+ +∈

= +
X

Three curses

State space
Outcome space
Action space (feasible region)
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The curses of dimensionality

The computational challenge:

How do we find              ? 1 1( )t tV S+ +

How do we compute the expectation? 

How do we find the optimal solution? 

{ }( )1 1( ) max ( , ) ( ) |t t t t t t t tx
V S C S x E V S S+ +∈

= +
X
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Pre- and post-decision states

New concept:
» The “pre-decision” state variable:

•

• Same as a “decision node” in a decision tree. 

» The “post-decision” state variable:

•

• Same as an “outcome node” in a decision tree.

The information required to make a decision t tS x=

The state of what we know immediately after we
         make a decision.

x
tS =
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⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

Pre- and post-decision states

Pre-decision, state-action, and post-decision

Pre-decision state State Action Post-decision state

93  states 93 9 state-action pairs× 93  states
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A single, complex entity

City
ETA
Equip

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Dallas
41.2

Good

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

40t =
Pre-decision

Chicago
54.7
Good

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

40t =
Post-decision

Chicago
56.2

Repair

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

50t =
Pre-decision

Pre- and post-decision attributes for our nomadic truck 
driver:

Chicago
-
-

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Decision
40t =

…
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Pre- and post-decision states

( , )t t tS R D=

Pre-decision: resources and demands
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, ( , )x M x
t t tS S S x=

Pre- and post-decision states
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Pre- and post-decision states

1 1 1
垐( , )t t tW R D+ + +=

x
tS ,

1 1( , )M W x
t t tS S S W+ +=
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Pre- and post-decision states

1tS +
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System dynamics

It is traditional to assume you are given the one-step 
transition matrix:

» Computing the transition matrix is impossible for the vast majority 
of problems.

We are going to assume that we are given a transition 
function:

» This is at the heart of any simulation model.  
» Often rule-based. Very easy to compute, even for large-scale 

problems.

( )1 1, ,  M
t t t tS S S x W+ +=

1 1     ( | , ) Probability that action  takes us from state  to state t t t t t tp S S x x S S+ +=
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The transition function

Working with pre- and post-decision states
» The “usual” transition function:

» The transition function broken into two steps:

( )
( )

,

,
1 1

,         The pure effect of a decision

,   The effect of the exogenous information

x M x
t t t

M W x
t t t

S S S x

S S S W+ +

=

=

( )1 1 1, ,         From  to .M
t t t t t tS S S x W S S+ + +=
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The transition function

Actually, we have three transition functions:
» The attribute transition function:

» The resource transition function

» The general transition function:

( )
( )

,

,
1 1

,         The pure effect of a decision

,   The effect of the exogenous information

x M x
t t t

M W x
t t t

a a a x

a a a W+ +

=

=

( )
( )

,

,
1 1

,         The pure effect of a decision

,   The effect of the exogenous information

x M x
t t t

M W x
t t t

S S S x

S S S W+ +

=

=

( )
( )

,

,
1 1

,         The pure effect of a decision

,   The effect of the exogenous information

x M x
t t t

M W x
t t t

R R R x

R R R W+ +

=

=
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Bellman’s equations with the post-decision state

Bellman’s equations broken into stages:

» Optimization problem (making the decision):

• Note: this problem is deterministic!

» Simulation problem (the effect of exogenous 
information):

( )( ),( ) max ( , ) ( , )            x M x
t t x t t t t t t tV S C S x V S S x= +

{ },
1 1( ) ( ( , )) |x x M W x x

t t t t t tV S E V S S W S+ +=
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Bellman’s equations with the post-decision state

Challenges
» For most practical problems, we are not going to be 

able to compute            .

» Concept: replace it with an approximation            and 
solve

» So now we face:
• What should the approximation look like?
• How do we estimate it?

( )( ) max ( , ) ( )            x x
t t x t t t t tV S C S x V S= +

( )x x
t tV S

( )x
t tV S

( )( ) max ( , ) ( )            x
t t x t t t t tV S C S x V S= +
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Approximating the value function

For “resource allocation” problems, we have been 
using:
» Linear (in the resource state):

» Piecewise linear, separable:

      ( ) ( )x x
t t ta ta

a
V R V R

∈

= ∑
A

Best when assets are complex,
which means that  is small
(typically 0 or 1).

taR

Best when assets are simple,
which means that  may be
larger.

taR

       ( )x x
t t ta ta

a
V R v R

∈

= ⋅∑
A
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Our general algorithm
Step 1: Start with a post-decision state 
Step 2: Obtain Monte Carlo sample of               and

compute the next pre-decision state:

Step 3: Solve the deterministic optimization using an
approximate value function:

to obtain     . 
Step 4: Update the value function approximation

Step 5: Find the next post-decision state:

, 1 ,
1 1 1 1 1 1 ˆ( ) (1 ) ( )n x n n x n n

t t n t t n tV S V S vα α−
− − − − − −= − +

( )1 ,ˆ max ( , ) ( (        , )   )n n n M x n
t x t t t t t tv C S x V S S x−= +

n
tx

( ), ,
1 , ( )n M W x n n

t t tS S S W ω−=

,
1

x n
tS −

( )n
tW ω

, , ( , )x n M x n n
t t tS S S x=

Simulation

Optimization

Statistics
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Competing updating methods

Comparison to other methods:
» Classical MDP (value iteration)

» Classical ADP (pre-decision state):

» Our method (update         around post-decision state):

( ), 1 ,

, 1 ,
1 1 1 1 1 1

ˆ max ( , ) ( ( , ))  

ˆ( ) (1 ) ( )

n n x n M x n
t x t t t t t t

n x n n x n n
t t n t t n t

v C S x V S S x

V S V S vα α

−

−
− − − − − −

= +

= − +

( )1
1( ) max ( , ) ( )n n

x tV S C S x EV S−
+= +

( )1
1

'

1
1 1

ˆ max ( , ) ( ' | , ) '  

ˆ( ) (1 ) ( )

n n n n
t x t t t t t t

s

n n n n n
t t n t t n t

v C S x p s S x V s

V S V S vα α

−
+

−
− −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

= − +

∑
ˆ updates ( )t t tv V S

1 1ˆ updates ( )x
t t tv V S− −

, 1x n
tV −
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The previous post-decision state: trucker in Texas

Nomadic trucker illustration

1 ( )=( )
 

x
t

Location TX
S

Time avail t−

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Pre-decision state: we see the demands

$300

$150

$350

$450

Nomadic trucker illustration

ˆ( , )t t

TX
S D

t
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
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We use initial value function approximations…

0 ( ) 0V CO =

0 ( ) 0V MN =

$300

$150

$350

$450
0 ( ) 0V CA =

0 ( ) 0V NY =

Nomadic trucker illustration

ˆ( , )t t

TX
S D

t
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
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… and make our first choice:  

$300

$150

$350

$450

0 ( ) 0V CO =

0 ( ) 0V CA =

0 ( ) 0V NY =

Nomadic trucker illustration
1x

( )
1

x
t

NY
S

t
⎛ ⎞

= ⎜ ⎟+⎝ ⎠

0 ( ) 0V MN =
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Update the value of being in Texas.

1( ) 450V TX =

$300

$150

$350

$450

0 ( ) 0V CO =

0 ( ) 0V CA =

0 ( ) 0V NY =

Nomadic trucker illustration

( )
1

x
t

NY
S

t
⎛ ⎞

= ⎜ ⎟+⎝ ⎠

0 ( ) 0V MN =
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Now move to the next state, sample new demands and 
make a new decision

$600

$400

$180

$125

0 ( ) 0V CO =

0 ( ) 0V CA =

0 ( ) 0V NY =

1( ) 450V TX =

1 1
ˆ( , )

1t t

NY
S D

t

Nomadic trucker illustration

+ +

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

0 ( ) 0V MN =
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Update value of being in NY

0 ( ) 600V NY =

$600

$400

$180

$125

0 ( ) 0V CO =

0 ( ) 0V CA =

1( ) 450V TX =

1 ( )
2

x
t

CA
S

t+

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

Nomadic trucker illustration

0 ( ) 0V MN =
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Move to California.

$150

$400

$200

$350

0 ( ) 0V CA =

0 ( ) 0V CO =

1( ) 450V TX =

Nomadic trucker illustration

0 ( ) 600V NY =

2 2
ˆ( , )

2t t

CA
S D

t+ +

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

0 ( ) 0V MN =
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Make decision to return to TX and update value of being in 
CA

$150

$400

$200

$350

0 ( ) 800V CA =

0 ( ) 0V CO =

1( ) 450V TX =

0 ( ) 500V NY =

2 2
ˆ( , )

2t t

CA
S D

t+ +

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

Nomadic trucker illustration

0 ( ) 0V MN =
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Back in TX, we repeat the process, observing a different 
set of demands.

1( ) 450V TX =

$275

$800

$385

$125

0 ( ) 0V CO =
0 ( ) 500V NY =

Nomadic trucker illustration

0 ( ) 800V CA =

3 3
ˆ( , )

3t t

TX
S D

t+ +

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

0 ( ) 0V MN =
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We get a different decision and a new estimate of the value 
of being in TX

1( ) 450V TX =

0 ( ) 0V CO =

$275

$800

$385

$125

0 ( ) 500V NY =

Nomadic trucker illustration

0 ( ) 800V CA =

3 3
ˆ( , )

3t t

TX
S D

t+ +

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

0 ( ) 0V MN =
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Updating the value function:

1

2

2 1 2

Old value:
     ( ) $450

New estimate:
ˆ      ( ) $800

How do we merge old with new?
ˆ     ( ) (1 ) ( ) ( ) ( )

                  (0.90)$450+(0.10)$800
                   $485

V TX

v TX

V TX V TX v TXα α

=

=

= − +
=
=

Nomadic trucker illustration
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An updated value of being in TX

1( ) 485V TX =

0 ( ) 0V CO =
0 ( ) 600V NY =

$275

$800

$385

$125

Nomadic trucker illustration

0 ( ) 800V CA =

3 3
ˆ( , )

3t t

TX
S D

t+ +

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

0 ( ) 0V MN =
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Outline
The languages of dynamic programming
A resource allocation model
The post-decision state variable
Example: A discrete resource: the nomadic trucker
The states of our system
Example: A continuous resource: blood inventory 
management
Approximation methods
» Lookup tables and aggregation
» Basis functions

Stepsizes
Exploration vs. exploitation
Applications
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The states of our system

Now let’s take a look at what we just did:

( )

Attribute of our nomadic trucker at time  before the
  decision is made.

ˆ Vector of demands that are revealed at time .
ˆ,    Pre-decision state variable.

Attribute of our nomadic trucke

t

t

t t t

x
t

a t

D t

S a D

a

=

=

=

= r at time  after the
  decision is made.

       Post-decision state variable.x x
t t

t

S a=
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A single, complex entity

City
ETA
Equip

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Dallas
41.2

Good

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

40t =
Pre-decision

Chicago
54.7
Good

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

40t =
Post-decision

Chicago
56.2

Repair

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

50t =
Pre-decision

Pre- and post-decision attributes for our nomadic truck 
driver:

Chicago
-
-

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Decision
40t =

…
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Multiple, complex entities

Notation for multiple entities:
» The truck state vector:

» The information process:

( )

The attributes of the truck
    The attribute space

The number of trucks with attribute 

  The truck state vector

truck
ta

truck truck
t ta a

a
a

R a

R R
∈

=
∈

=

=
A

A

ˆ The change in the number of trucks with 
   attribute .

truck
taR

a
=
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Multiple, complex entities

Modeling the fleet management problem:
» The load state vector:

» The information process:

( )

The attributes of a load to be moved.
    The attribute space

The number of tasks with attribute 

   The load state vector

load
tb

load load
t tb b

b
b

R b

R R
∈

=
∈

=

=
B

B

ˆ The change in the number of loads with 
   attribute .

load
tbR

b
=
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Multiple, complex entities

Modeling the fleet management problem:
» The resource state vector (a.k.a. “physical state”)

» The information process:

( ),truck load
t t tR R R=

( )

ˆ The number of new arrivals (of drivers and loads) 
   during time interval .

垐 ,

t

truck load
t t

t

R
t

R R

W

=

=

=
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The states of our system

The state of a single, simple entity:

a = [ ]Location

         | | 100 10,000a∈ ≈ −A A |
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The states of our system

The state of a single, complex entity:

a =

Time
Location

Equipment type
Home base

Operator attributes
Time in service
Maintenance status

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

10 100         | | 10 10a∈ ≈ −A A |

The curse of dimensionality!
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The states of our system

Multiple, complex entities

1

2

3

n

ta

ta

ta
t

ta

R

R

R
R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
M

The number of dimensions of our state 
variable is equal to the size of the state 
space for a single entity problem.

The curse of curses.
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The states of our system

What is a state variable?

» A minimally dimensioned function of history that 
necessary and sufficient to compute the decision 
function, the transition function and the contribution 
function.
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The states of our system

The three states of our system
» The state of a single resource/entity

» The state of all our resources

» The state of knowledge

1

2

3

t

t t

t

a
a a

a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1

2

3

ta

t ta

ta

R

R R

R

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

( ),       Estimates of "other parameters"t t t tS R θ θ= =
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The states of our system

The state variable

( ),  t t tS R θ=

The resource (physical) state

“Additional information”
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The states of our system

The state variable

( ),  t t tS R θ=

The “state of knowledge”
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What is missing from our state variable?

1( ) 485V TX =

0 ( ) 0V CO =
0 ( ) 600V NY =

$275

$800

$385

$125

Nomadic trucker illustration

0 ( ) 800V CA =

3 3
ˆ( , )

3t t

TX
S D

t+ +

⎛ ⎞
= ⎜ ⎟+⎝ ⎠

0 ( ) 0V MN =
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Outline
The languages of dynamic programming
A resource allocation model
The post-decision state variable
Example: A discrete resource: the nomadic trucker
The states of our system
Example: A continuous resource: blood inventory 
management
Approximation methods
» Lookup tables and aggregation
» Basis functions

Stepsizes
Exploration vs. exploitation
Applications
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Blood management

Managing blood inventories
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Blood management

Managing blood inventories over time

t=0

0S
1 1
垐,R D6 4 7 4 8

1S

Week 1

1x
1
xS

2 2
垐,R D6 4 7 4 8

2S

Week 2

2x
2
xS

3 3
垐,R D6 4 7 4 8

3S
3x

Week 2

3
xS

t=1 t=2 t=3



AB+,1

AB+,2

AB+,3

AB+,2

AB+,3

AB+,0

,
ˆ

t ABD +

AB+,0

AB+,1

AB+,2

M
AB-,0

AB-,1

AB-,2

M

M

,( ,0)t ABR +

,( ,1)t ABR +

,( ,2)t ABR +

,( ,0)t ABR −

,( ,1)t ABR −

,( ,2)t ABR −

,
ˆ

t ABD −

,
ˆ

t AD +

,
ˆ

t ABD +

,
ˆ

t ABD +

,
ˆ

t ABD +

,
ˆ

t ABD +

AB+

AB-

A+

A-

B+

B-

O+

O-

x
tR

M

M

AB+,0

AB+,1

,
ˆ

t ABD +

Satisfy a demand Hold 

tS = ( )ˆ         ,             t tR D



AB+,0

AB+,1

AB+,2

tR

M
AB-,0

AB-,1

AB-,2

M

x
tR

AB+,0

AB+,1

AB+,2

AB+,3

M
AB+,0

AB+,1

AB+,2

AB+,3

M
ˆ

tD

,( ,0)t ABR +

,( ,1)t ABR +

,( ,2)t ABR +

,( ,0)t ABR −

,( ,1)t ABR −

,( ,2)t ABR −



( )tF R

AB+,0

AB+,1

AB+,2

tR

M
AB-,0

AB-,1

AB-,2

M

x
tR

M
ˆ

tD

,( ,0)t ABR +

,( ,1)t ABR +

,( ,2)t ABR +

,( ,0)t ABR −

,( ,1)t ABR −

,( ,2)t ABR −

Solve this as a 
linear program.

AB+,0

AB+,1

AB+,2

AB+,3

M
AB+,0

AB+,1

AB+,2

AB+,3



( )tF R

AB+,0

AB+,1

AB+,2

tR

M
AB-,0

AB-,1

AB-,2

M

x
tR

M
ˆ

tD

Duals

,( ,0)t̂ ABν +

,( ,1)t̂ ABν +

,( ,2)t̂ ABν +

,( ,0)t̂ ABν −

,( ,1)t̂ ABν −

,( ,2)t̂ ABν −

Dual variables give 
value additional 
unit of blood..

AB+,0

AB+,1

AB+,2

AB+,3

M
AB+,0

AB+,1

AB+,2

AB+,3
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Updating the value function approximation

Estimate the gradient at 

,( ,2)
n
t ABR +

,( ,2)ˆn
t ABν +

n
tR

( )tF R
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Updating the value function approximation

Update the value function at 

,
1

x n
tR −

1
1 1( )n x

t tV R−
− −

,
1

x n
tR −

,( ,2)ˆn
t ABν +

( )tF R

,( ,2)
n
t ABR +
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Updating the value function approximation

Update the value function at ,
1

x n
tR −

,( ,2)ˆn
t ABν +

,
1

x n
tR −

1
1 1( )n x

t tV R−
− −
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Updating the value function approximation

Update the value function at ,
1

x n
tR −

,
1

x n
tR −

1
1 1( )n x

t tV R−
− −

1 1( )n x
t tV R− −
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Updating the value function approximation

The updated function may not be concave: 

,
1

x n
tR −
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0v

1v

ˆ n
itV

2v 3v

Value
function

A concave function…

0v

1v

2v

0u 1u 2un
taR

Slopes … has monotonically decreasing 
slopes.  But updating the function 
with a stochastic gradient may 
violate this property.

0u 1u 2un
itR 3u

Maintaining concavity

ˆn
itv
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0v

1v

0u 1u 2un
taR

2v

Maintaining concavity
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0v

1v

0u 1u 2un
taR

ˆn
tav

2v

Maintaining concavity
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0v

1v

2v

0u 1u 2u

1 ˆ(1 )n n n
ta ta tav v vα α−= − +

n
taR

Maintaining concavity
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0v

1v

2v

0u 1u 2u

1 ˆ(1 )n n n
ta ta tav v vα α−= − +

n
taR

A projection algorithm (SPAR)
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0v

1v

2v

0u 1u 2u

1 ˆ(1 )n n n
ta ta tav v vα α−= − +

n
taR

A projection algorithm (SPAR)
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0v

1v

2v

0u 1u 2u

A projection algorithm (SPAR)

n
taR

1 ˆ(1 )n n n
ta ta tav v vα α−= − +
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Blood management

t
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Blood management
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Blood management
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Blood management
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0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200

Iterations

To
ta

l S
ho

rta
ge

s 
(#

 u
ni

ts
)

Not Using
Value
Functions

Using Value
Functions

Blood management
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Outline
The languages of dynamic programming
A resource allocation model
The post-decision state variable
Example: A discrete resource: the nomadic trucker
The states of our system
Example: A continuous resource: blood inventory 
management
Approximation methods
» Lookup tables and aggregation
» Basis functions

Stepsizes
Exploration vs. exploitation
Applications
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Multiattribute resources

Assets can have a number of attributes:

Location
Equipment type

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Location
ETA

Equipment type
Train priority

Pool
Due for maint

Home shop

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Location
ETA

A/C type
Fuel level

Home shop
Crew
Eqpt1

Eqpt100

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

M

Location
ETA

Bus. segment
Single/team

Domicile
Drive hours
Duty hours

8 day history
Days from home

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Boxcars
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Multiattribute resources

The evolution of attributes:

≈A

Time
Location

Boxcar type
Time to dest.

4,000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1,680,000

a = Time
Location
⎡ ⎤
⎢ ⎥
⎣ ⎦

Time
Location

Boxcar type

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

40,000

Time
Location

Boxcar type
Time to dest.
Repair status

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5,040,000

Time
Location

Boxcar type
Time to dest.
Repair status
Shipper pool

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

50,400,000
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The states of our system

Multiple, complex entities

1

2

3

n

ta

ta

ta
t

ta

R

R

R
R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M
M

The number of dimensions of our state 
variable is equal to the size of the state 
space for a single entity problem.

The curse of curses.
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1( , )C a d 2( , )C a d
'
1( )V a

'
2( )V a

Aggregation for table lookup
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NE region
PA

TX

?PAv =

NEv

PA NEv v≈

Aggregation for table lookup
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Different levels of aggregation

≈A

Time
Location

Fleet
Domicile

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

600,000

a =

2,000

Time
Location
⎡ ⎤
⎢ ⎥
⎣ ⎦

Time
Location

Fleet

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

6,000

Time
Location

Fleet
Domicile

Days from home

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

12,000,000

Aggregation for table lookup
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Aggregation

Aggregation:
» Exact methods

• We have to use the same level of aggregation throughout (in 
particular, the transition matrix and value function).

1
'

( ) max ( , ) ( ' | , ) ( ')t t x t t t t t t
s

V S C S x p s S x V s+
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

∑

Same level of aggregation
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Aggregation

Approximate DP
» We only need to discretize the value function.  We can 

capture the full state variable in the transition function:
• Decision function:

• Transition functions

( )arg max ( , ) ( )            x
t x t t t t tx C S x V S= +

,
1

,

( , ( ))

( , )

M W x
t t t
x M x
t t t

S S S W

S S S x

ω−=

=

Value function using aggregated state

⎫
⎪
⎪
⎬
⎪
⎪⎭

No aggregation
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Updating the value of a driver:

1 ˆ( ) (1 ) ( ) ( )n n

Location
Location Location Fleet

v Fleet v Fleet v Domicile
Domicile Domicile DOThrs

DaysFromHome

α α−

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

$2050 = $2000 $2500(1 0.10)− × + (0.10)

Value function 
Approximation may 
have fewer attributes 
than driver.

Drivers may have very 
detailed attributes

Aggregation for table lookup
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Estimating value functions
» Most disaggregate level

1 ˆ( ) (1 ) ( ) ( )n n

Location
Location Location Fleet

v Fleet v Fleet v Domicile
Domicile Domicile DOThrs

DaysFromHome

α α−

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

Aggregation for table lookup
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Estimating value functions
» Middle level of aggregation

1 ˆ( ) (1 ) ( ) ( )n n

Location
Fleet

Location Location
v v v Domicile

Fleet Fleet
DOThrs

DaysFromHome

α α−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥= − +⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

Aggregation for table lookup
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Estimating value functions
» Most aggregate level

[ ] [ ]1 ˆ( ) (1 ) ( ) ( )n n

Location
Fleet

v Location v Location v Domicile
DOThrs

DaysFromHome

α α−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Aggregation for table lookup
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Using different levels of aggregation:
» Pick the (single) level of aggregation that produces the best overall 

results.
» Pick the level of aggregation that produces the lowest variance for 

each state.
» Use a weighted sum of estimates at each level of aggregation 

(weight depends only on the level of aggregation):

» Use a weighted sum, but where the weights depend on the state 
(attribute):

( , ) ( , )n g n g n
a a

g
v w v=∑

( , ) ( , )n g n g n
a a a

g
v w v=∑

Aggregation for table lookup
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State-dependent weighted aggregation:
» There may be hundreds of thousands of weights, so 

these have to be easy to compute.

( ) ( )( )

( ) ( ) ( )

12( ) ( ) ( )

       1

where

       

g g g
a a a a

g g

g g g
a a a

v w v w

w Var v β
−

= =

∝ +

∑ ∑

Estimate of variance Estimate of bias

Both can be computed using simple recursive formulas. 

Aggregation for table lookup
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Outline
The languages of dynamic programming
A resource allocation model
The post-decision state variable
Example: A discrete resource: the nomadic trucker
The states of our system
Example: A continuous resource: blood inventory 
management
Approximation methods
» Lookup tables and aggregation
» Basis functions

Stepsizes
Exploration vs. exploitation
Applications
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Basis functions

Aggregation works well when we have a state 
(attribute) space with very little structure.
But what if we have some structure? Consider our 
inventory problem:

1D̂

1x

2D̂

2x 3x

3D̂

4x

4D̂

5x

5D̂

6x

6D̂ 7D̂

( )     arg m ( )ax xn D O
t x t tt tx px Vcx R= − +

x
tR
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Basis functions

Approximating the value function:
» We have to exploit the structure of the value function 

(e.g. concavity).
» We might approximate the value function using a 

simple polynomial

» .. or a complicated one:

» Sometimes, they get really messy:

2
0 1 2( | )t t t tV R R Rθ θ θ θ= + +

( )2
0 1 2 3 4( | ) ln sin( )t t t t t tV R R R R Rθ θ θ θ θ θ= + + + +
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Basis functions

We can write a model of the observed value of being in a 
state as:

This is often written as a generic regression model:

The ADP community refers to the independent variables      
as basis functions:

( )2
0 1 2 3 4ˆ ln sin( )t t t tv R R R Rθ θ θ θ θ ε= + + + + +

0 1 1 2 2 3 3 4 4       Y X X X Xθ θ θ θ θ= + + + +

0 0 1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )

   = ( )f f
f

Y R R R R R

R

θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ

θ ϕ
∈

= + + + +

∑
F

( )f Rϕ are also known as features.
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Basis functions

Methods for estimating
»

»

θ
1 2垐 �Generate observations , ,..., , and use traditional regression

methods to fit .

Nv v v
θ

Use recursive statistics - update  after each iteration:nθ

( )

( )

1 1 1 1 1
1

1

21 1 1
1

ˆ( | ) ( | )

( )
( )

ˆ    ( | )

( )

n n n n n n n n n
n

n n n n n
n

F

V S v V S

S
S

V S v

S

θ θ α θ θ

ϕ
ϕ

θ α θ

ϕ

− − − − −
−

− − −
−

= − − ∇

⎛ ⎞
⎜ ⎟
⎜ ⎟= − −
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 4 2 4 3
Error

1 4 2 4 3

Basis functions
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Basis functions

Notes:
» When using basis functions, we are basically drawing 

on the entire field of statistics.
» Designing basis functions (independent variables) is 

mostly art.
» In special cases, the resulting algorithm can produce 

optimal solutions.
» Most of the time, we are hoping for “good” solutions.
» In some cases, it can work terribly.
» As a general rule – you have to use problem structure.  

Value function approximations have to capture the right 
structure.  Blind use of polynomials will rarely be 
successful.
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Outline
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A resource allocation model
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management
Approximation methods
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Stepsizes

Stepsizes:
» Fundamental to ADP is an updating equation that looks 

like:

1
1 1 1 1 1 1 ˆ( ) (1 ) ( )n x n x n

t t n t t n tV S V S vα α−
− − − − − −= − +

Old estimate New observationUpdated estimate

The stepsize
“Learning rate”

“Smoothing factor”
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Stepsizes

Theory:
» Many convergence results 

require:

» For example:

Practice
» 1/n “doesn’t work”
» Constant stepsizes
» Various stepsize rules

• Deterministic
• Stochastic

( )

1
1

2
1

1

   n
n

n
n

α

α

∞

−
=

∞

−
=

= ∞

< ∞

∑

∑

1
1

n n
α − =
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Rate of convergence

Smoothed estimate using 1/n
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Rate of convergence

The challenge of stepsizes:
» When have we converged?
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Stepsizes

Deterministic stepsize rules:
1 1 or       Basic averaging

Slows the rate of descent
1

   "Search then converge"

    McClain's formula
1

n

n

n

n
n

n

n n
a

a n
b a
n

b a n
n

β

β

α

α

α

αα
α α

=

=
+ −

+
=

+ +

=
+ −
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Stepsizes
The right stepsize rule depends on the rate of change in the 
value function.
This varies widely for different parameters in the same 
problem:
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Stepsizes
The right stepsize rule depends on the rate of change in the 
value function.
This varies widely for different parameters in the same 
problem:

Large stepsize
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Stepsizes
The right stepsize rule depends on the rate of change in the 
value function.
This varies widely for different parameters in the same 
problem:

Small stepsize
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Stepsizes

Stochastic stepsize rules:

{ }1

max

min

0 1
0

1

Let:    New observation - old estimate

Kesten's rule: Tunable parameters

1        

Stochastic gradient adaptive stepsize (Benveniste et al.)

          

n n

n

n n
n n

n n n
n

a K K a
a K

a

ε ε

α

α

ε

α α

α α ε ϕ

−
−

<

−

=

= = +
+

⎡ ⎤= +⎣ ⎦

( )

max min

1

            , ,

where:

1n n n n

a α α

ϕ α ϕ ε−= − +
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Stepsizes

( ) ( )

( ) ( )

2

21 2

2 21

2

1
1

where:

         1

As  increases, stepsize decreases
As  increases, stepsize increases.

n n n

n n
n n

n

σα
λ σ β

λ α λ α

σ

β

−

−

= −
+ +

= − +

Estimate of the variance

Estimate of the bias

Bias

Noise

Bias-adjusted Kalman filter
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Stepsizes

Bias-adjusted Kalman filter
» Properties:

2

2

1   as 0

1/    as 0 or 

n

n n

α σ

α β σ

→ →

→ → →∞



© 2007 Warren B. Powell Slide 165

Stepsizes

Deterministic data: predictions and stepsizes
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Stepsizes

Low noise stochastic data: predictions
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Stepsizes

Low noise stochastic data: stepsizes
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Stepsizes

High noise stochastic data: predictions

50

60

70

80

90

100

110

120

130

140

150

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298

OSA
1/n
Exact
Constant
Actuals

Si
gn

al
 w

ith
 h

ig
h 

no
is

e



© 2007 Warren B. Powell Slide 169

Stepsizes

High noise stochastic data: stepsizes
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Stepsizes

Bias-adjusted Kalman filter learning rate vs. other 
stochastic stepsize rules

Pe
rc

en
ta

ge
 e

rr
or

 fr
om

 o
pt

im
al

Average number of observations per state

Bias-adjusted
Kalman filter

Other stochastic stepsize rules
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1( , )C a d 2( , )C a d
'
1( )V a

'
2( )V a

Exploration vs. exploitation
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What decision do we make?

» The one we think is best?

• Exploitation

» Or do we make a decision just to try something and 
learn more about the result?

• Exploration

Exploration vs. exploitation
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Exploration vs. exploitation with the nomadic 
trucker

» Pure exploitation

Exploration vs. exploitation



© 2007 Warren B. Powell Slide 175

Information collection

Pure exploitation
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Exploration vs. exploitation

The state variable:

( )( )1 1, ,  n n
t t t tS a V σ− −=

“Resource state” Knowledge state



© 2007 Warren B. Powell Slide 177

Resource allocation

1
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Strategies for overcoming the exploitation trap

» Generalization:
• Visit one state, learn something about other states
• Exploitation with more general learning

» Gittins exploration

Exploration vs. exploitation

1 1    max ( , ) ( ( , )) ( ) ( ( , ))n n M n M
t d

x C a d V a a d n a a dσ− −= + + Γ

1Std. dev. of ( ( , ))n MV a a d−“Magical index”
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Information collection

Pure exploration



© 2007 Warren B. Powell Slide 180

Outline
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Schneider National



© 2007 Warren B. Powell Slide 182

Schneider National
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Case study: truckload trucking
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Case study: truckload trucking

simulation objective function
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Case study: truckload trucking

simulation objective function
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Case study: truckload trucking
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Case study: truckload trucking
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Case study: truckload trucking
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Case study: truckload trucking
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Case study: truckload trucking
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Case study: truckload trucking
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Implementation metrics
Results from the real world:
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The planning process

M T W Th F Sa Su M T W Th F Sa Su

?
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The flow of information

In practice, there are a number of parallel information 
processes taking place:

Order is made

Empty transit time to shipper becomes known.

Customer inspects car and accepts or rejects.

Customer loads car (we learn the release time)

Time

Destination of order becomes known
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Cars Orders

Engineering practice
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A car distribution problem
Ratio of Empty Miles to Total Miles Traveled

0%

10%

20%

30%

40%

50%

60%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Empty miles as a percent of total miles

History

Basic optimization model (engineering practice)
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Cars Orders

Engineering practice
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Cars Orders

Engineering practice

⎫
⎪
⎪
⎬
⎪
⎪⎭

Assignments to booked 
orders.

⎫
⎪
⎪
⎬
⎪
⎪⎭

Repositioning movements 
based on forecasts
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A car distribution problem
Ratio of Empty Miles to Total Miles Traveled
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A car distribution problem
Ratio of Empty Miles to Total Miles Traveled
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Basic optimization model (engineering practice)

“Optimized” with adaptive learning
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Average Tankers In Flight per Period
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