Panel of Emerging Technology Coordinating Committee Emerging Technologies in Support of Smart Grids

SynchroPhasor Measurements: System Architecture and Performance Evaluation in Supporting Wide-Area Applications

Zhenyu (Henry) Huang, and **Jeff Dagle** Pacific Northwest National Laboratory Richland, Washington USA

IEEE PES General Meeting Pittsburgh, PA. July 2008

Current Development in Phasor Technology

Massive PMUs are being put in operation

- Steady increase of PMUs installations
- Mandatory PMU installations, e.g. in China
- Conversion of existing measurement devices, e.g. relays
- Higher PMU sample rates are used
 - Sample rate from 25/30 sps to super-synchronous rate, e.g. 100/120 sps.
- Frequency tracking and frequency compensation become popular in phasor algorithms
- Dynamic performance of phasors becomes critical as driven by applications

♦Need capability to handle massive PMUs in phasor networks → new phasor architecture

- Need to evaluate phasor measurement from a dynamic perspective
- Need to evaluate phasor measurement from a system-wide perspective
- Need to study the implication of phasor quality for phasor applications

Phasor Applications

	Class A (e.g. Small Signal Stability Monitoring)	Class B (e.g. State Estimation Enhancement)	Class C (e.g. Post Event Analysis)	Class D (e.g. Visualization)
Low Latency				
Reliability Availability				
Accuracy				
Time Alignment				
Message Rate				

Legend:

Not very important Somewhat important Fairly important Critically important

* Source: NASPI Data and Management Task Team

Phasor Architecture – WECC WAMS

Pacific Northwest

* Source: J. Hauer, with modifications

Phasor Architecture – Eastern Interconnection

Pacific Northwest

* Source: NASPI Data and Management Task Team

Phasor Architecture – Future

* Source: NASPI Data and Management Task Team

Next Generation PDC

PDC 10¹

- Ruggedised PCs
- Substation Use
- Local buffer
 - Comms failure
 - On Demand
- Hub (Multiple WAMS)
- Limited Applications
- <10 PMUs

PDC 10²

- Single Datacentre Server
- Regional/National Use
- Variety of Applications
- Offline and Control Room
- <100 PMUs

PDC 10³

- Multiple Servers
- Large connected areas
- Parallel/redundant use
- Security
- Management tools
- <1000 PMUs

* Source: NASPI Performance and Standards Task Team

PMU Testing with Super-synchronous Rates 60Hz@120sps Amp Modulation 88.3Hz (1)

Voltage Channels

NATIONAL LABORATORY

PMU Testing with Super-synchronous Rates 60Hz@120sps Amp Modulation 88.3Hz (2)

Voltage and Frequency Channels

Prony Analysis – Modes of Voltages

In CompassPlotsA: caseID=Test080514_120sps

casetime=05/19/08_10:11:30

Sorted Mode Table for pole1: Fast noise

Signal				Freq in Hz	Damp Ratio (pu)	Res Mag	Res Angle
PMU1	Voltage	1A	VMag	31.70001919	-0.00001008	0.12587943	47.61523878
PMU1	Voltage	1B	VMag	31.70001919	-0.00001008	0.12446225	47.96357279
PMU1	Voltage	1C	VMag	31.70001919	-0.00001008	0.12298750	47.05455071
PMU1	Voltage	1	VMag	31.70001919	-0.00001008	0.12476979	47.69990087

Sorted Mode Table for pole3: Fast noise

Signal		Freq in Hz	Damp Ratio (pu)	Res Mag	Res Angle		
PMU1	Voltage	1A	VMag	31.81987021	-0.00000716	0.50641836	104.01486468
PMU1	Voltage	1B	VMag	31.81987021	-0.00000716	0.50599074	-136.06882188
PMU1	Voltage	1C	VMag	31.81987021	-0.00000716	0.50661187	-15.89264980
PMU1	Voltage	1	VMag	31.81987021	-0.00000716	0.00049901	167.18866719

Prony Analysis – Mode Shapes of Voltages

Pacific Northwest

System-wide Phasor Evaluation with Actual Event Data – Timing (1)

Timing Inconsistency Due to Filtering
– Northwest Generation Trip Event on April 18, 2002

System-wide Phasor Evaluation with Actual Event Data – Timing (2)

Timing Inconsistency Due to Poor Synchronization
BC Hydro Fault Test on October 25, 2003

System-wide Phasor Evaluation with Actual Event Data – Timing (3)

Improved Timing of Voltage Signals BC Hydro Fault Test on December 3, 2003

Application Implication: Mode Shape Analysis to Determine Key Generators for Monitoring & Control

- Delay in input leads to unexpected control output, and thus unexpected (usually deteriorated) control performance
- Constant delay can be compensated with preprocessing logic
- Random delay needs to be accommodated with robust control design

System-wide Phasor Evaluation with Actual Event Data – Parasitic Oscillation

Parasitic Voltage Oscillations – Northwest Oscillation on October 9, 2003

- Parasitic oscillations lead to false alarming
- Parasitic oscillations lead to false arming of special stability controls
- PMUs need to be tested in a lab environment to determine the level of aliasing
- Parasitic oscillations need to be identified with careful examination of actual phasor measurements
- Lab testing and field measurement examination help to determine PMU setting and, if necessary, to improve PMU logic

System-wide Phasor Evaluation with System Test

WECC staged system tests

- Large Disturbance: Chief Joseph 1400 MW Brake Insertion
- Small Disturbance: ±125 MW HVDC Modulation (PDCI)
- "Noise" Probing: ±10/20 MW HVDC Modulation (PDCI)

Continuous System-wide Dynamic Monitoring

NATIONAL LABORATORY

20

 Phasor quality has been improved tremendously with the joint efforts of users, vendors and researchers

- New issues are emerging because of new development (e.g. more and faster PMUs)
- Phasor quality affects phasor applications, but in different degrees
- Deployment of phasor measurement units and phasor networks need to consider applications

Acknowledgement

- John Hauer, PNNL
- Ken Martin, BPA
- Bill Mittelstadt, BPA
- 🔶 Dan Trudnowski, Montana Tech
- John Pierre, University of Wyoming
- Ning Zhou, PNNL
- 🔶 Manu Parashar, EPG

 NASPI Data and Management Task Team
NASPI Performance and Standards Task Team www.naspi.org

Questions?

Zhenyu (Henry) Huang, PNNL

1(509) 372-6781, <u>zhenyu.huang@pnl.gov</u>

60Hz@720sps Amp Modulation 88.3Hz Model Studies

Pacific Northwest

one

60Hz@720sps Amp Modulation 88.3Hz Model Studies

60Hz@720sps Amp Modulation 88.3Hz Model Studies

