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Current Development in Phasor Technology

Massive PMUs are being put in operation
Steady increase of PMUs installations
Mandatory PMU installations, e.g. in China
Conversion of existing measurement devices, e.g. relays

Higher PMU sample rates are used
Sample rate from 25/30 sps to super-synchronous rate, 
e.g. 100/120 sps. 

Frequency tracking and frequency compensation 
become popular in phasor algorithms 
Dynamic performance of phasors becomes critical 
as driven by applications 
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Emerging Challenges

Need capability to handle massive PMUs in phasor 
networks new phasor architecture 
Need to evaluate phasor measurement from a 
dynamic perspective
Need to evaluate phasor measurement from a 
system-wide perspective 
Need to study the implication of phasor quality for 
phasor applications 
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Phasor Applications

Message 
Rate

Time 
Alignment

Accuracy

Reliability
Availability

Low 
Latency

Class D
(e.g. Visualization)

Class C
(e.g. Post Event 

Analysis)

Class B
(e.g. State 
Estimation 

Enhancement)

Class A
(e.g. Small Signal 

Stability 
Monitoring)

Message 
Rate

Time 
Alignment

Accuracy

Reliability
Availability

Low 
Latency

Class D
(e.g. Visualization)

Class C
(e.g. Post Event 

Analysis)

Class B
(e.g. State 
Estimation 

Enhancement)

Class A
(e.g. Small Signal 

Stability 
Monitoring)

Legend:
1. Not very important  2. Somewhat important  3. Fairly important  4. Critically important

* Source: NASPI Data and Management Task Team



5

Phasor Architecture – WECC WAMS

* Source: J. Hauer, with modifications
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Phasor Architecture – Eastern Interconnection

* Source: NASPI Data and Management Task Team
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Phasor Architecture – Future

* Source: NASPI Data and Management Task Team
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Next Generation PDC

* Source: NASPI Performance and Standards Task Team
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Voltage Channels

PMU Testing with Super-synchronous Rates 
60Hz@120sps Amp Modulation 88.3Hz (1)
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PMU Testing with Super-synchronous Rates 
60Hz@120sps Amp Modulation 88.3Hz (2)

60Hz@120sps_Amod@88.3Hz 06/28/08_18:50:33
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Prony Analysis – Modes of Voltages

In CompassPlotsA: caseID=Test080514_120sps    casetime=05/19/08_10:11:30

Sorted Mode Table for pole1: Fast noise                         
Signal                      Freq in Hz   Damp Ratio (pu)    Res Mag      Res Angle
PMU1  Voltage 1A  VMag 31.70001919    -0.00001008     0.12587943    47.61523878
PMU1  Voltage 1B  VMag 31.70001919    -0.00001008     0.12446225    47.96357279
PMU1  Voltage 1C  VMag 31.70001919    -0.00001008     0.12298750    47.05455071
PMU1  Voltage 1   VMag 31.70001919    -0.00001008     0.12476979 47.69990087

Sorted Mode Table for pole3: Fast noise                         
Signal                      Freq in Hz   Damp Ratio (pu)    Res Mag      Res Angle
PMU1  Voltage 1A  VMag 31.81987021    -0.00000716     0.50641836   104.01486468
PMU1  Voltage 1B  VMag 31.81987021    -0.00000716     0.50599074  -136.06882188
PMU1  Voltage 1C  VMag 31.81987021    -0.00000716     0.50661187   -15.89264980
PMU1  Voltage 1   VMag 31.81987021    -0.00000716     0.00049901 167.18866719
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Prony Analysis – Mode Shapes of Voltages
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System-wide Phasor Evaluation with Actual Event 
Data – Timing (1)

NWgentrips020418_BPAS&DIT2_Malin 08/26/02_10:40:24
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Timing Inconsistency Due to Filtering
– Northwest Generation Trip Event on April 18, 2002
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031025BCHfaultTest1_BPA&BCH Swings Normalized
031025BCHfaultTest1_BPA&BCH 12/10/03_15:10:06
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– BC Hydro Fault Test on October 25, 2003
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System-wide Phasor Evaluation with Actual Event 
Data – Timing (3)
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Delay in input leads to 
unexpected control output, 
and thus unexpected 
(usually deteriorated) 
control performance
Constant delay can be 
compensated with pre-
processing logic
Random delay needs to be 
accommodated with robust 
control design

1+sT’q31+sT’q21+sT’q1

Application Implication: 
Mode Shape Analysis to Determine Key Generators for 
Monitoring & Control
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System-wide Phasor Evaluation with Actual 
Event Data – Parasitic Oscillation

Parasitic Voltage Oscillations 
– Northwest Oscillation on October 9, 2003
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Parasitic oscillations lead to false alarming 
Parasitic oscillations lead to false arming of special 
stability controls

PMUs need to be tested in a lab environment to 
determine the level of aliasing 
Parasitic oscillations need to be identified with careful 
examination of actual phasor measurements
Lab testing and field measurement examination help to 
determine PMU setting and, if necessary, to improve 
PMU logic

Application Implication: 
Modal Analysis for System Monitoring and Control
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System-wide Phasor Evaluation with System Test

WECC staged system tests
Large Disturbance: Chief Joseph 1400 MW Brake Insertion 
Small Disturbance: ±125 MW HVDC Modulation (PDCI)
“Noise” Probing: ±10/20 MW HVDC Modulation (PDCI)

PDCI

1400 MW
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Continuous System-wide Dynamic Monitoring

WAMS
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Closing Remarks 

Phasor quality has been improved tremendously 
with the joint efforts of users, vendors and 
researchers
New issues are emerging because of new 
development (e.g. more and faster PMUs)
Phasor quality affects phasor applications, but in 
different degrees
Deployment of phasor measurement units and 
phasor networks need to consider applications
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60Hz@720sps Amp Modulation 88.3Hz 
Model Studies 
– one-sided spectrum of input signal 
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60Hz@720sps Amp Modulation 88.3Hz 
Model Studies 
– one-sided spectrum of single-phase voltage
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60Hz@720sps Amp Modulation 88.3Hz 
Model Studies 
– one-sided spectrum of three-phase voltage
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