Opportunities for Increasing Penetration Levels of Renewable Energy

Johan Enslin; Bartosz Wojszczyk; Farid Katerai Quanta Technology

JEnslin@Quanta-Technology.com

Overview:

- Renewable Energy Portfolio Standards
- Trends in Renewable Energy development
- Planning for Large-scale Renewable Power Integration
- Levelized Cost of Generation
- Hybrid Renewable Energy solutions
- Plug-in Hybrid Vehicles Load Balancing
- Case studies with large scale integration
- Roles of Energy Storage
- Advanced Generator Power Electronics
- Summary

U.S. States - Renewable Portfolio Standards

By 2025, we will need approx. 428 GW of new generation and capacity

Wind Power Trends and Issues

Repowering:

- 2.2 to 4.3 increased production
- Reduction of number of wind turbines
- Increased capacity factor of 1.5 to 3.5
- Less visual impact
- Short permitting time
 High Altitude Wind Power

Worldwide Capacity:

- 93.8 GW in 2007
- 19.7 GW added in 2007
- 5.2 GW added in US 2007

Offshore: 1080 MW - 2007

- Short Transmission
- Land usage conflicts
- Improved production
- Less intermittency
- Improved capacity factors
- 40 GW proposed in Europe

Solar Market Growth \$ 16 B in USA by 2015

Levelized US Costs of Generation 2007

Need feed-in tariff structure (Europe) for USA to increase penetration

Planning Issues for Large-scale Renewable Power

- Business-as-Usual with local < 20% penetration levels</p>
 - Increased effort in system planning Intermitted nature.
 - Voltage support Local and system-wide FACTS
 - Low-Voltage Ride-Through (LVRT) Requirements
 - Generator balancing and regulation.
 - Resource and load forecasting
- Increased efforts for > 20% penetration levels
 - Hybrid and matched hydro, solar, geothermal, wind generation, etc.
 - SmartGrids Demand Response
 - Advanced renewable generator PE
 - Add energy storage central and distributed
 - Asynchronous links HVDC
 - Non-electric energy carriers Hydrogen, etc.

Complementary Renewable Portfolio Mix

Sources:- PG&E and CEC PIER

Plug-in Hybrid Cars (PHEV) – Load Balancing

- Several Manufacturers will start mass production in 2009
- Peak loading Dx issues SmartGrid AMI
- Distributed Storage for Wind and Solar Power Balancing
- 600 GWh DESR potential from 10% of 200 million US passenger cars
- Linking different fuel options and energy transport mediums

Hybrid Energy Carrier Options

Approach to Large Scale Renewables Integration

Generation Portfolio Storage Demand Response

- Hybrid Energy Mix
- Advanced PE
- Fast Ramping
- Wide Operating Range
- Regulation capability

- Peak shaving
- Dispatch Renewables
- Mitigate Over Gen.
- Voltage Support & LVRT
- F-Regulation capability
- FACTS Integration
- Power Quality

- Price sensitive load
- Responsive to ISO
- Frequency Response
- Responsive to Wind
- SmartGrid / AMI
- Gen. load match
- PHEV

Network Interconnection of 6 GW Offshore Wind

- 6 GW Wind by 2020 in 20 GW load (30%)
- Total cost 10 000€
- On-shore dynamic and static
 reactive power demand 2 6 GVAr
- Network upgrades 650 M€
- 25-70 km offshore (AC or DC) Tx
- Bundling 150 kV AC offshore wind farm connections into 2 380 kV Offshore hubs
- 5th Harmonic resonance between cable capacitance and short-circuit reactance:
- Utilizing 2 HVDC links (BritNed & NorNed)
- Hybrid (AC + DC) off-shore network is preferred solution
- 2007 300 MW built out

Grid Inter-connection Alternatives

Renewable Energy Resources in Southern CA

Large-scale US Wind Impact Study

- Southern CA Renewable Energy Target
 - 2000 MW renewable energy portfolio,
 - 5,500 MW load demand in 2016 (36% penetration)
- Proposed hybrid approach to meet this requirement:
 - 1200 MW of wind generation
 - 900 MW of thermal solar generation
- Main findings and recommendations:
 - Need 500 kV SunLink transmission
 - Utilize hybrid wind solar generation nature.
 - Power balancing with 1200 MW of wind and 900 MW of solar.
 - Voltage support with 300 MVAr MSC and 200 MVAr STATCOMs
 - Special protection schemes and curtailment.
 - Utilize pump-storage facilities
 - Study hybrid impacts of 4 GW wind solar- geothermal

Daily Normalized Wind, Solar and Load Patterns

Storage Characteristics and Technologies

The Netherlands Energy Storage Island

- Utilizing levy upgrades
- Low-head hydro

Thermal Solar with Molten Salt Energy Storage

Flywheel Plants for Regulation Services

$$E = (I\omega^2)/2 = (mr^2\omega^2)/2 = (m v^2)/2$$

Source:- Beacon Power

Advanced Generator Power Electronics

- Variable Speed and Reactive Power control
- Dynamic Voltage Response Similar to STATCOM
- Advanced LVRT capability
- Spinning reserve emulation
- Active ancillary services frequency regulation
- Energy storage integration

Summary:

- Most states have aggressive RPS > 10 25% by 2020
- Interconnection requirements are increasing
- Solutions to higher renewable penetration levels:
 - Hybrid wind, hydro, geothermal and solar generation mix
 - Energy storage
 - Short-term balancing, LVRT and Power Quality 0.1 10 minutes
 - Regulation Services 10 15 minutes
 - Medium-term peak shaving and load balancing 1 2 hours
 - Distributed Energy Storage 600 GWh Plug-in-Hybrid potential
 - Advanced Generation Power Electronics
 - SmartGrid / AMI with Demand Response

