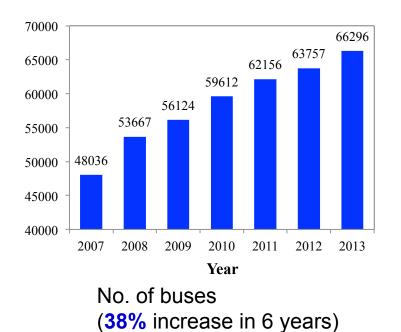
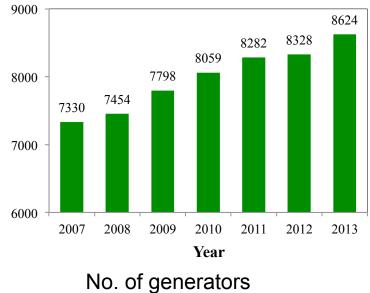


Applications of High Performance Computing for Dynamic Security Assessment of Power Systems

A Presentation at the IEEE-PES GM 2013 Panel Session Potential Impact of High-Performance Computing on the Power Grid

Vancouver, Canada July 2013


Lei Wang Powertech Labs Inc. Surrey, BC, Canada


Introduction

- Stability analysis is one of the basic forms of power system analysis
- In recent years, stability analysis has been increasingly performed as a real-time control center application, referred to as on-line Dynamic Security Assessment (on-line DSA),
- Traditional DSA requires intensive numerical computations and thus usually takes long time to complete
- Improving the speed of DSA has been the focus of extensive research and development for many years
- This presentation discusses
 - Challenges in on-line DSA
 - Techniques that have been applied, or have potential, to improve the speed of DSA by using high performance computing techniques

Challenges

• Size of power system models has been growing

(18% increase in 6 years)

The sizes of the full US/Canada eastern interconnection models

- The largest known **real-time models** are in the order of 40,000 buses
- Computation speed is a serious concern for such large system models

Challenges (cont'd)

- Model complexity
 - Trend to include node/breaker details in models
 - Adoption of dynamic load models such as composite load models
 - Increased applications of controls based on power electronics (such as those found in HVDC, FACTS, wind turbines, etc.)
 - Consideration of relay and protection models
- Need to study more contingencies
 - May be in the order of thousands
 - Compliancy with NERC criteria
- More advanced analysis tasks
 - Determination of stability limits
 - Identification of control actions

Challenges (cont'd)

- Example of stability limit computations BC Hydro TTC requirements
 - 240 hourly, 72 daily, and 112 weekly cases
 - 7 transfer paths to study, resulting in (240+72+112)×7=2968 total one-dimensional transfer analysis
 - Subject to all applicable contingencies
 - For all applicable security criteria (voltage and transient)
 - Using the full BC Hydro system and reduced external network (5,000 buses)
 - All computations must be completed within one hour

Where are we now?

- Computation speed for time-domain simulations has been improved significantly over the past decades
 - Faster computers
 - More efficient compilers
 - Better computational algorithms
- Examples
 - Time required to run a 10-second simulation
 - On Intel Xeon X5670 CPU (2.9 GHz); no distributed/parallel computation

System size	Medium	Large	Very large
No. buses	7,210	16,330	54,481
No. of generators	1,040	1,922	5,203
Time (seconds)	6.4	39.5	243.7
	仓		企
Faster than real time!		Improvem required h	
tech 🙃			required in

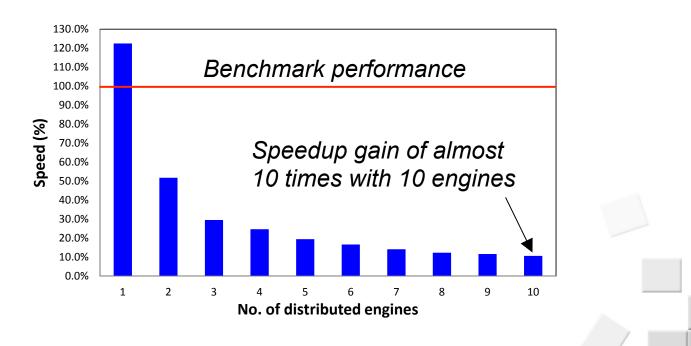
High Performance Computing (HPC)

- The need to use HPC for on-line DSA is clear
- Options
 - Super computers
 - ✓ Highest possible performance
 - \checkmark May not be easily accessible for production use; high cost (?)
 - High performance multi-chip multi-core servers / GPU
 - ✓ High performance/cost ratio: a high-end dual-chip, 16-core server costs less than \$13K
 - ✓ Maintenance/upgrade requirements; hard to customize
 - Cloud computing
 - ✓ Cost effective
 - ✓ Easily customizable; maintenance free
 - ✓ Security concern (?)

Methods for on-line DSA using HPC

Distributed computations

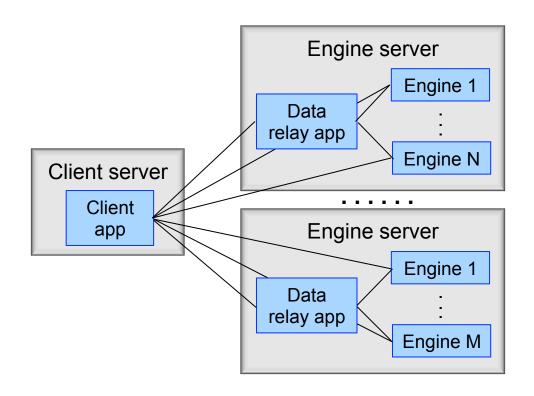
- Multiple simulations (for different system conditions or contingencies) are performed concurrently in multiple CPUs or CPU cores
- Relatively easy to implement
- Difficult to apply for computation tasks that are series in nature. For example, one simulation; one stability limit analysis


• Parallel computations

- One simulation (or part of a simulation such as network solution) is performed in multiple CPU or CPU cores
- Difficult to implement, particularly when there is need to co-exist with high-efficiency series computations
- Required to break the performance bottleneck

Distributed computation example

- Illustrates the efficiency of a distributed computation scheme
- The power system model:
 - 6,620 buses, 1,978 generators, 400 contingencies
- Different number of computation engines are used
 - Speed performance is benchmarked as % of time required to perform the same analysis in non-distributed mode using the same simulation code

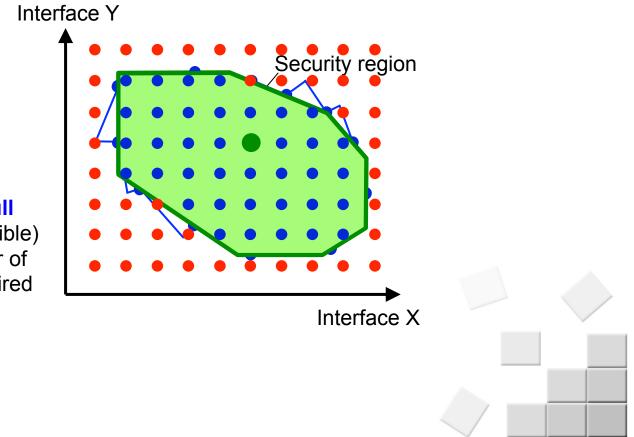


Improving the efficiency in distributed computations

- There may be serious performance barrier when using a large number of servers for a distributed computation task
 - Network Latency
 - Network Throughput
 - Concurrency / Locking
 - Contention for system resources
- The solutions
 - Better load balancing (use dynamic scheduling)
 - Delegation of work (data relays)
 - Go with parallel computation if possible

Example: Data Relay

- Efficient to minimize network data traffic during distributed computations if a large number of servers are used
 - This has been implemented in a number of on-line DSA systems which use multiple servers for large scale distributed computations



Parallel computation example

- Network solution in time-domain simulations may take up to 40% of computation time for large system models
 - Previous research done at UBC showed that speedups of nearly 7 times was achieved for such computations with research-grade parallel code
- A parallel algorithm is implemented recently by Powertech in the **production code** of a transient stability analysis program
 - It can automatically perform network solutions in multiple threads
- Performance results
 - For a system model with 38,611 buses (this is the dimension of the network equation) and 2,510 generators
 - With 4 threads enabled for parallel network solution, a speedup of 1.3 is observed for the overall simulation speed
 - Or, the speedup for the network solution portion is roughly 2.3

Challenges for determination of stability limits

- A 2-D stability limit search problem is shown
- Computationally very intensive since many time-domain simulations are required to determine the security region

Algorithm 2: suitable for full pisthiaupidripastide/lpapalsslible) priorizes singumber of simulations are hequired

Conclusions

- **Challenges** of performing DSA, specially on-line DSA
 - Growing size of power system models
 - Model complexity
 - Need to study more contingencies
 - More advanced analysis tasks
- **Possibilities** of improving DSA speed
 - Options available
 - Different approaches
- **Examples** are given to show the achievements and potentials

