Pioneering New Frontiers in Revitalizing the Grid

Vahid Madani, P.E., Fellow IEEE

Pacific Gas and Electric Co. IEEE PES GM – Emerging Technology Coordinating Committee Late Breaking News July 26, 2010

Overview

Smart Grid today

What is the Smart Grid? Smart Meter & customer benefits Smart Grid is a journey Smart Grid standards

The future of Smart Grid for customers

Wide-Area

Distributed generation, wind integration, storage / microgrids DES Challenges Electric vehicle Automated demand response Utility-scale storage Synchrophasor Technology Deployment Situational Awareness & Advance Warning Systems System Integrity Protection Schemes

Precise Energy Management Systems

Information processing

Smart Grid integration

Self Managing System

Concluding Remarks

Complex Systems

Moving To A Sustainable Electric System

Solar Farms / Power Plants

Wind Integration Issues

Wind generation tends to be inversely correlated to daily load curve, creating ramping impacts

Could you predict the energy production for this wind park either day-ahead or 5 hours in advance? 700 Each Day is a different color. 600 **Day 29** 500 400 Megawatts Da **Day 26** 300 200 100 0 1415161718192021222324 13

Tehachapi Wind Generation in April – 2005 Source – AESO - Alberta Electric System Operator

Hour

Application of synchronized-phasors has become a National Priority after the 2003 widespread blackout. The leading cause was identified as lack of corroborating information of power system in real-time.

PMUs APPLICATION LEVELS

SYSTEM F, V, and Angle

AREA

F, V, Angle, P&Q

INTER AREA LINKS

SUBSTATION
POWER PLANT

F, V, Angle, P-V Curve, Imp. Loci R-X, AGCC

> F, V, Angle, AGCC, P-V, Q-V, R-X, P-F

PG&E Approach to Synchronized Phasor Project

Initiatives include:

- Develop Strategy and Roadmap
- Working with Partners and Stakeholders
 - Address NERC Security Requirements and Interoperability
 - Address Reliability Requirements
 - Industry Collaboration and Planning
 - Tools to build Applications
 - Develop maintenance practices
 - Training

Organizational Stakeholders and Functions in the Planning and Implementation **Objective** – To integrate Synchrophasor technology into electrical grid, improve performance (e.g. reliability) and customer service, and improve coordination with ISO and neighboring systems.

- 1. Architecture development
 - a) Use systems engineering approach
 - b) Standards based (open protocol)
 - c) Performance evaluation (driven by applications)
 - d) Storage Capacity and Simultaneous Multi-User Data Access
 - e) PMU and Data Concentrator, Data Access, Methodology
 - f) Stakeholder engagement
 - g) ISO and neighboring systems coordination
 - h) Redundancy PMU, EMS and DMS
 - i) Maintenance and asset management
 - j) Gap analysis

Technical Scope of Initiative

- 2. Communication infrastructure development
 - a) Network availability criteria (for control applications)
 - b) Network requirements (Performance, Security, Quality of Service, etc.)
 - i. Use of existing infrastructure?
 - ii. Completely independent infrastructure ?
 - iii. Hybrid infrastructure ?
- 3. Proof of Concept
- 4. Application areas
 - a) Advanced warning systems
 - b) Adaptive protection
 - c) Real time control
 - d) Dynamic data storage per NERC requirement CRP-002
 - e) Integration of renewables into enterprise solutions
 - f) Inclusion of phasors into simulation programs including those used for training
 - g) Maintenance
 - h) Model validation against existing EMS and future DMS
 - i) Integration with existing SCADA

System Integrity Protection Schemes (SISP) Purpose

- Goal to prevent propagation of disturbances for severe <u>system</u> emergencies caused by un-planned operating conditions and ensure system security
- Last line of defense to improve system security and prevent disturbance propagation - Could help better utilize system margins
- Stabilize System for Equipment Outages, N-2 or beyond
 - Prevent overloading of the lines
 - Arrest voltage decline
 - Initiate pre-planned separation of the power system, etc.

PACI – AC Corridor, 500kV PDCI – DC Link, 1000kV

Wide-Area Systems Technology Enablers

- System Integrity Protection Schemes (SIPS)
 - Remedial Action Schemes (RAS)
 - Special Protection Systems (SPS)
- Integrated system-wide communication infrastructure allowing flexible and secure data collection
- Synchronized Measurements System S

IEEE / CIGRE Report - 2009

1. Normal Conditions (49%) with three components, 19% Increased Power Flow 8% Important, 22% Normal – Normal system improvements

 System Security (51%) with two components, 22% Essential 29% for Increased Security - which at one time was the primary intent of SIPS.

2009 IEEE Report

1996 IEEE Report

Load Shedding	Generation Control - Slow		
	Speed		
ii. Load Rejection – (%)	i. Generator Rejection – (8%)		
iii. Under-Frequency Load Shedding – (8%)	xviii. Power System Stabilizer Control – (3%)		
iv. Under-Voltage Load Shedding – 🍡	xix. Discrete Excitation – (1%)	Table 1 Percentages of Me	ost Common SPS Types
(6%)		Type of SPS	Percentage
v. Adaptive Load Mitigation – (2%)	xxi. Generator Runback – (3%)	Generator Rejection	21.6
ix. Overload Mitigation – (7%)	xxiv. AGC Actions – (4%)	Load Rejection	10.8
System Stability	Controls - Slow Speed	Underfrequency Load Shedding	8.2
vi. Out-of-Step Tripping – (7%)	xiv. Tap-Changer Control – (2%)	System Separation	6.3
		Turbine Valve Control	6.3
vii. <u>Voltage Instability</u>	xvi. Turbine Valve Control – (1%)	Load & Generator Rejection	4.5
Advance Warning – (2%)		Stabilizers	4.5
viii Angular Stability Advance Warning	vviii Black-Start or Gas-Turning	HVDC Controls	3.6
– (1%)	Start-Up – (1%)	Out-of-Step Relaying	2.7
xi. System Separation – (7%)		Discrete Excitation Control	1.8
		Dynamic Braking	1.8
xx. Dynamic Braking – (1%)	Congestion Mitigation	Generator Runback	1.8
	x. Congestion Mitigation – (3%)	Var Compensation	1.8
Controlo High Speed Repetive Voltage	vii Load and Constation Polonaing	Combination of Schemes	11.7
Compensation	– (3%)	Others	12.6
xxii. Bypassing Series Capacitor – (2%)	xxv. Busbar Splitting – (2%)	······································	
xiii. Shunt Capacitor Switching – (5%)			
xv. SVC/STATCOM Control – (4%)	<u>Others</u>		
xvii. HVDC Controls – (3%)	xxivi. Other, please specify – (5%)		

Outline - Phasor Technology Applications

- Overview
- PMU Placement Study Goals
- Methodology
- PMU Placement Exercise
- Application Needs
- Infrastructure Considerations
- Interim Results

Overall Criteria

- Least cost
- Maximum benefit
- Include all costs
 - -PMU
 - Communication
 - Secondary hardware and software
- Study Risks & Off Ramos
 - Study integration with multi-function devices
- Include all applications
 - Identify near term vs. long term

PMU Placement Studies

- Criteria studies for PMU location:
- Situational awareness
 - Abnormal angles
 - Dynamics oscillations
 - Line overloads, and
 - Abnormal voltages
- EMS
- Small Signal Oscillation
- Wind farm locations
- Two-ended fault location which lines
- SIPS application considerations?
- The DC line availability

PMU Placement Criteria – T&D

APPLICATIONS

- State Estimation
- Critical Corridors & Tie-Lines
- WECC Regional Paths
- Angular Separation
- Phase Angle Balancing
- Major Generation/Load
- Variation in Generation
- Variation in Load Demand
- Congestion Management
- Wind Integration
- Local and Inter-area Oscillations
- Islanding, system restoration
- Adaptive Protection
- FACTS Controls
- Rotor Angle Measurement
- Black Start
- Volt VAR Optimization
- Market Driven Exchanges

INFRASTRUCTURE CONSIDERATIONS

- PMU Ready Equipment
 - Devices
 - Infrastructure
 - Network Exists Today
 - Feasibility and location of Network Aggregate Site
 - LAN/WAN Redundancy
 - Capacity to meet latency requirements
 - Existing Digital Connectivity
- On Critical Cyber Asset (CCA) List
- NERC PRC 002 Sites

Overall Criteria (Guiding Principal)

- Least cost
- Maximum benefit
- Include all costs
 - PMU
 - Communication
 - Secondary hardware and software
- Study Risks and off ramps
- Include all applications

Risk Analysis 1 - Integration with Multi-function & Infrastructure RAS System Relevance

- RAS system has been designed for integrated functionality
 - Telemetry (MW, MVAR, Voltage, Frequency)
 - Other Measurements Temperature, Wind Speed
 - RAS has been designed with future integration of PMU functionality
 - I.e. 100Mbps Ethernet switches and supporting routers
 - Integration of phasors for RAS functions enhances RAS applications in the future, E.g.:
 - Manual load shedding at transmission level already part of RAS HMI
 - PMU provides enhancement / supervisory layer
 - RAS devices are redundant over diverse routes
 - Advance Alarm features and monitoring functions already addressed
 - Cyber Security RAS and EMS are 24/7 monitored & meet CCA
 - RAS is designed to support Disaster Recovery
 - Phasor project architecture needs to support concurrent control centers; i.e.: Redundant EMS, Redundant Situational awareness
 - Integration of PMU into RAS allows concurrent / multi-host EMS
 - Harmonized event records for comprehensive system analysis Using common time tagged elements and Sequence of Event recording

Risk Analysis 2 - Integration With Multi-function & Infrastructure RAS System Relevance

- Use of Multifunction devices as PMUs is not a new concept
 - There are benefits and challenges, and well-established processes to manage the challenges.
- RAS system architecture established to facilitate synchrophasors
 - RAS functions are application of synchrophasors
- Other examples of integrated functionalities in use at PG&E
 - Use of feeder protective devices for UFLS (Under-Frequency Load Shedding)
 - Use of line protective devices for out of step protection
 - Modularizations Automatics and SCADA functions by protective devices

Risks and Mitigation Plans

No	Risk Description	Mitigation strategy or Contingency Plan
6	Upgrades to firmware and/or hardware	The concept of modularization and / or use of modular devices are key to life cycle support and the rapidly evolving technology. Firmware or module upgrades are reality. The risks are minimized by thorough testing, including testing any
		possible logical interaction between RAS and phasor functions.
		Important to emphasize that the multifunction device used in the PACI-RAS system is specifically designed to decouple RAS and phasor functions to a great extent (including use of different physical cards and ports, etc.)
7	Reliability and availability of the functions (RAS or phasor functions) as opposed to reliability and availability of a specific device.	Higher system reliability is achieved by using means beyond just using reliable relays/PMUs. Integration with PACI RAS automatically facilitates redundancy. Using redundancy has been a key element of achieving high-level of system reliability and availability.

Key Elements of System Management and Solution Risk Mitigation

- 1. Change Management Plan
- 2. Clearance Plan
- **3.** Failure Plan
- 4. Technical Risk analysis
- 5. Vendor Support program maybe with additional support plan for a period after commissioning.
- 6. Spares Plan
- 7. Maintenance plan

PMU Placement Study Goals

• "*Optimally*" identify locations for PMU deployment to:

• Maximize benefit for multiple applications

 Least cost solution: *i.e. leverage existing or planned infrastructure,* PMU placement in neighboring systems

Applications' criteria:

- Situational Awareness
 - Improving State Estimation (observability, critical measurements)
 - Monitoring Critical Paths (tie-lines, WECC paths, congested paths, angular separation cut-planes)
 - Monitor major generation and loads
 - Oscillation Monitoring (Local and Inter-area)
- Critical Substation Locations
 - Renewable Generation
 - Islanding Separation & Restoration
 - RAS, Adaptive Protection
 - FACTS, SVC and HVDC Controls

Other Aspects: Upgradable hardware, communications, redundancy, etc.

Methodology

Based on the Weighted Average Criterion:

Decision process which typically involves choosing among <u>Alternatives</u> based on multiple <u>Criteria</u> to satisfy a <u>Goal</u>

 For each PMU location being considered, independently evaluate its *`applicability/need*' for the decision '*Criteria*' under consideration (e.g. application, networking cost, etc).

- Assign 'weights' to each of the decision criterion based on:

- Criterion importance
- Feasibility / likelihood Infrastructure support
- Maintenance over life cycle
- Prioritize PMU location alternates based on the 'aggregated weighted score'

Hierarchy Structure for PMU Placement Decision Criteria

Prioritization Based on Weighted Sum Scoring

KV level	Station	Name		Applications												F (wei	Priority ghted so ↓ SCORE (Priority)	core)
			State Estimation	PG&E Tie Lines	WECC Regional Paths	Regional Angular Separation	Local Angular Separation	Major Generation or Load	Congestion Management	Wind Integration	Inter-Area Oscillations	Local Oscillations	Islanding	Sytem Restoration	Adaptive Protection	Local FACTS Controls	}-	Applications
		ENTER Business Priority Weight fo Column Category	2 r /	2	2	1	1	2	1	2	2	2	2	1	1	2		Weights
				2	2	1					2				1		8.0	-
Sub	station L	ocation and	-	1		1		2				2			1		7.0	-
Volt	age Leve	el Applied	-	2	2	1					2				4		6.0	-
	•			2	2	•	1									2	5.0	-
·			4	1			1	2								2	4.0	-
KV level	Station	Name		Infrastructure SCORE (Priority)										TOTAL SCORE	PMU Location			
			s PMU- vice	(pe	al Cyber CA) list		ty for	oG&E	ty ts	ncy	l cy		e Site	٦			Counter	

		PACI RAS PMU Ready Device	COST (Networked)	On Critical Cybe Asset (CCA) list	IPAC / MPAC	Sites ready for upgrade for PRC 002	Existing PG&E Digital Conectivity	ODN Exists Today?	ODN LAN Redundancy	ODN WAN Reduncancy	Proposed Aggretate Site	}-	Infras	tructu	re
	ENTER Business	1	2	1	1	1	1	1	2	2	1				
	Priority Weight for Column Category												We	ights	
Substation Location and Voltage Level Applied		1	2	1		1	Yes	Yes		Yes		10.0	18	1	
		1	2	1		1	Yes	Yes		Yes	- Ayyreyale	10.0	17	2	
		1	2	1		1	Yes	Yes		Yes	- Substation -	10.0	17	3	
		1	2	1		1	Yes	Yes		Yes	Substation	10.0	16	4	
		1	2	1		1	Yes	Yes		Yes	Location	10.0	15	5	
		1	2	1		1	Yes	Yes		Yes		10.0	14	6	

System Architecture – Reporting Hierarchy

PDC – Phasor Data Concentrator

Example – High Level Architecture

Use Case

Streaming Data Rates – Single PMU

- Packet Model #1
 - 14 Synchrophasors
 - •V0, V1, V2, I0, I1, I2, Va, Vb, Vc, Ia, Ib, Ic, Vn & In
 - 8 Analogs (magnitudes)
 - •E.g.: Watts, Vars, Ambient Temperate, Wind Speed, etc.
 - Frequency
 - ROCOF (Rate of Change of Frequency)
 - 1 Digital Word (16 binary inputs)
- All Real Numbers (floating points)
- 60 and 120 Measurements or packets / sec (IEEE C37.118)
 Values above which includes computed phasors
- Communications Bandwidth Requirements:
 - •114,240 and 228,480 Bits/sec
- Migration to IEC 61850 increases the bandwidth by ~ 20% due to overhead

Single PMU

•Packet Model:

6 Synchronized Phasors

•Va, Vb, Vc, Ia, Ib, Ic

- Frequency
- ROCOF (Rate of Change of Freq)
- All Real Numbers (floating points)
- 60 and 120 Measurements or packets / sec
 - Values above
- Communication Bandwidth Requirement:
 - 67,200 at 60 pps (DS0, 64000 bits / seconds)
 - 134,400 at 120 pps

For 100 PMUS (60 samples / sec.)

•6 Phasors from each device - 67,200 (DS0, 64,000 bits / seconds / PMU Streamed Data) - 6,720,0000 ~ 6.7 Mbits / seconds DS0 = 64,000 bits / sec 24xDS0 ~ T1 (T1 = 1.544 Mbits/sec) Or 5 T1 = 5 (1.544) Mbits /sec OC 1 (DS3) = 51.84 Mbits / Seconds DS3 = 28 T1

System Storage Requirements (NERC PRC-002)

- 100 PMU Model, 14 Phasors / PMU @ 120 Packets/sec:
 - -153 Bytes/packet/PMU
 - -15,300 Bytes/packet for 100 PMUs
 - -1.84 MB/sec
 - -111 MB/min
 - -6.6 GB/hour
 - -160 GB/day
 - -4.8 TB/month
 - -57.2 TB/year
- As number of PMUs (or phasors extracted) increase, storage requirements increase

Conclusions

Smart Grid Is A Journey

Future Enable future services and foster innovation

Near Term Transform existing services

Today Integrate existing services to new platform

- Automated meter reading
- Electric field vehicles

- Automated home energy management
- Plug-in hybrid electric vehicle SmartCharge™

Integrated local generation and storage

Deep penetration of Demand Side Management

Years

Large Scale Deployment of PMU Systems

- Stringent and varied requirements
 - Must be a production system (full vendor support), high reliability and availability
- Accommodate all participants while ensuring interconnection performance
- Address both short and long term needs
 - System expandability → Initially limited number of measurements will grow over time including both synchrophasor and non-phasor data
 - System flexibility and adaptability →Start with small number of applications and add new in the future
- Address technology advancements and product development
 - Address relevant standards development that will continue to evolve: NERC CIP 003 – 009; synchro- phasor (IEC 37-118); cyber security; IEC 61850, etc.
- Consider system integration with other enterprise systems, such as EMS/SCADA, DMS, GIS

Self-managing Technologies

A self-managing system can sense its operating environment, model its behavior in that environment, and take action to change the environment or its behavior. An autonomic **self-managing** system has the properties of self-configuration, self-healing, self-optimization and self-protection.

Self-managing systems deliver:

