IEEE STANDARD 80 – 2000

IEEE SUBSTATIONS COMMITTEE ANNUAL MEETING – CIGRE COLLOQUIUM CHICAGO, IL MAY 19, 2011

Presented by

D. Lane Garrett Southern Company Services for Rich Keil – chair WG D7 Commonwealth Associates, Inc.

Purpose of IEEE-80

- Establish as a basis for design, the safe limits of potential differences that can exist in a substation under fault conditions between points that can be contacted by a human body
- Review substation grounding practices with special reference to safety, and develop criteria for a safe design

Purpose of IEEE-80

 Develop analytical methods as an aid in the understanding and solution of typical gradient problems.

Provide a procedure for the design of practical grounding systems, based on these criteria

Objectives of a Grounding System

- To provide means to carry electric currents into the earth under normal and fault conditions without exceeding any operating and equipment limits or adversely affecting continuity of service
- To assure that a person in the vicinity of grounded facilities is not exposed to the danger of critical electric shock

Practical Approach Strives to Control the Interaction of Two Grounding Systems

- The intentional ground, consisting of the ground electrodes buried at some depth below the earth's surface
- The accidental ground, temporarily established by a person exposed to a potential gradient in the vicinity of a grounded facility

IEEE-80 DESIGN STEPS

- Determine Substation Size and Soil Resistivity
- Determine Fault Current and Clearing Time
- Calculate Tolerable Touch and Step Voltages
- Layout Out Substation Ground Grid

IEEE DESIGN (continued)

- Calculate the Resistance of the Substation
- **Calculate the Grid Current**
- Calculate the Actual Touch and Step Voltages
- Compare the Tolerable Touch and Step Voltages to the Actual Voltages
- Redesign if Needed

IEEE-80 DESIGN CRITERIA

- Dalziel's Equation
- \Box 1000 Ω Body Resistance
- Resistance of Foot 3ρ
- **Touch Voltage**
- Step Voltage
- Transferred Voltage
- Metal-Metal Voltage

Dalziel's Findings

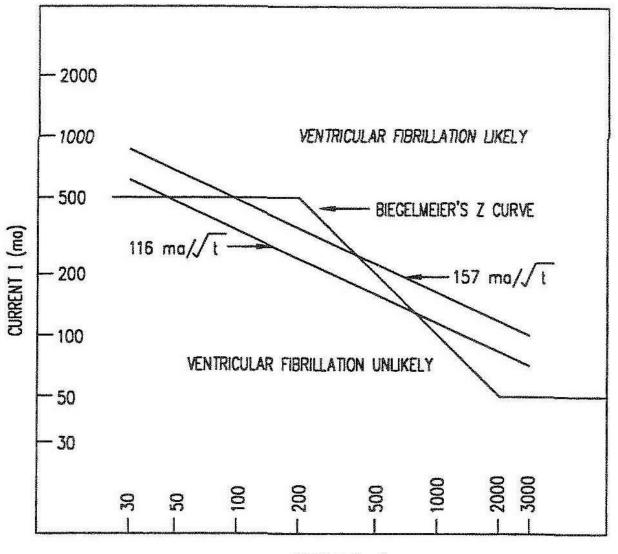
SS Current	Physiological Effects
1 mA	Perception
1 – 6 mA	Let-go
9 – 25 mA	Difficult or impossible to Let-go
60 – 100 mA	Ventricular Fibrillation

Dalziel's Equation

Current 99.5% of all persons can safely withstand without Ventricular Fibrillation

Tolerable Body Current Limits

$$I_B = \frac{0.116}{\sqrt{t_s}}$$

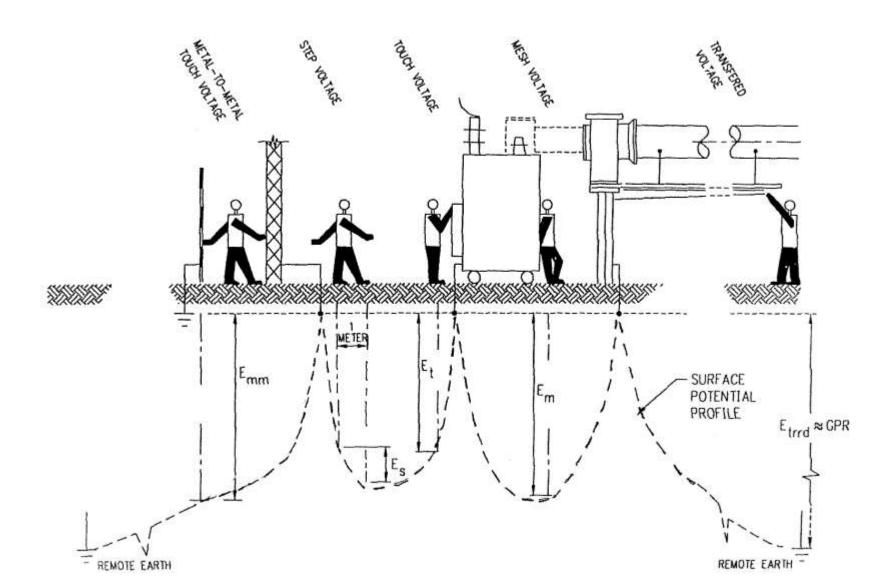

for 50 kg body weight

$$I_B = \frac{0.157}{\sqrt{t_s}}$$

for 70 kg body weight

 t_s time in seconds

BODY CURRENT VERSUS TIME



TIME t (ms)

KEY DEFINITIONS

GND POTENTIAL RISE (GPR):	The maximum voltage that a substation grounding grid may attain relative to remote earth
REMOTE EARTH:	Theoretical grounding point located an infinite distance away from the substation at zero potential
STEP VOLTAGE:	The difference in surface potential that occurs between the feet of a person with feet spaced one meter apart
TOUCH VOLTAGE:	Voltage between objects within the substation site that may be bridged by direct hand-to-hand or hand-to-feet contact
MESH VOLTAGE:	The maximum touch voltage within a mesh of a ground grid
TRANSFERRED VOLTAGE:	Special case of touch voltage when a voltage is transferred to a remote location external to the substation

BASIC SHOCK SITUATIONS

TOLERABLE VOLTAGES

Touch Voltage

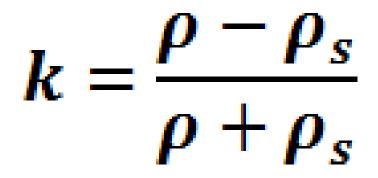
$$E_{toucloo} = 1000 + 1.5C_s \cdot \rho_s - \frac{-0.116}{\sqrt{t_s}}$$

$$E_{touch70} = 1000 + 1.5C_s \cdot \rho_s - \frac{-0.157}{\sqrt{t_s}}$$

$$E_{step50} = 4000 + 6C_s \cdot \rho_s - \frac{-0.116}{\sqrt{t_s}}$$

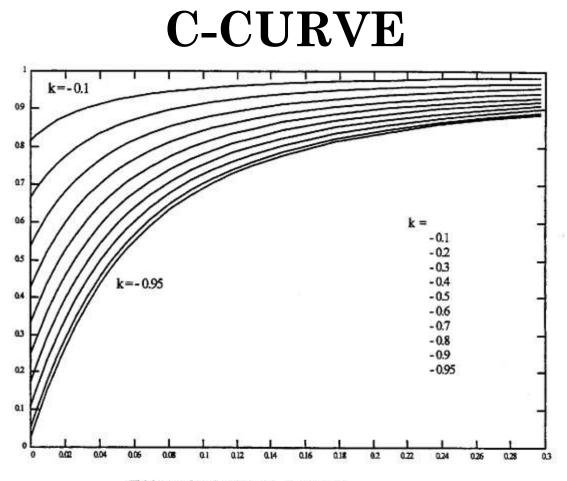
$$E_{step70} = 1000 + 6C_s \cdot \rho_s \frac{-0.157}{-\sqrt{t_s}}$$

Where


E_{step}	is the step voltage in V
E_{touch}	is the touch voltage in V
C_s	is determined from figure or equation
hos	is the resistivity of the surface material in Ω -m
ts	is the duration of shock current in seconds
If no protective surface layer is used, then C_s =1 and ρ_s = ρ .	

C-FACTOR

Determined by


- **Resistivity of Surface Material**
- Depth of Surface Material
- **Resistivity of Upper Layer Soil**
- Reflection Factor Based on Surface Material and Soil

REFLECTION FACTOR

- $\rho_{\rm s}$ surface material resistivity in Ω -m
- ρ resistivity of the earth beneath the surface material in Ω-m

Thickness of Surface Material, h, (meters)

Figure 11–C_s versus
$$h_s$$

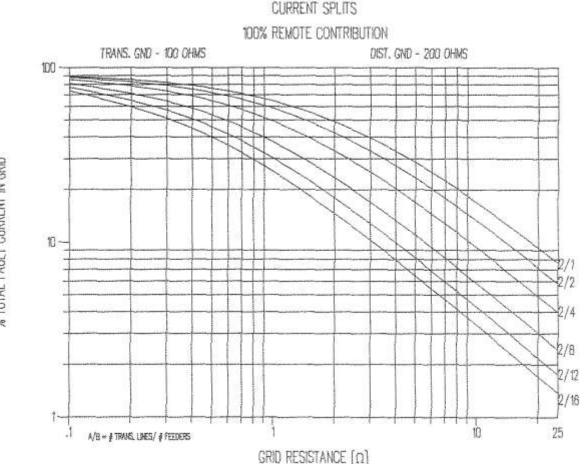
$$C_s = 1 - \frac{0.09 \left(1 - \frac{\rho}{\rho_s}\right)}{2h_s + 0.09}$$

ACTUAL TOUCH & STEP VOLTAGES BASED ON LAYOUT

Dependent on:

- Substation Grounding Layout
- **Soil Resistivity**
- Grid Resistance
- Grid Current

IEEE 80 Includes Approximate Equations or Methods for:


- Grid resistance
- Grid current (current division)
- Touch & Step Voltages
 - Geometric limitations
 - Uniform soil limitations

IEEE Resistance Equation

$$R_{g} = \rho \left[\frac{1}{L_{T}} + \frac{1}{\sqrt{20A}} \left(1 + \frac{1}{1 + h\sqrt{20/A}} \right) \right]$$

- A Area of Grid in m^2
- h Depth of Grid in m
- L_T Total Length of Grounding System

GRID CURRENT BASED ON TOTAL FAULT CURRENT AND SPLIT CURVES

% TOTAL FAULT CURRENT IN GRID

Mesh Voltage Equation

$$E_m = \rho \frac{K_m K_i I_G}{L_m}$$

Spacing Factor for Mesh Voltage

$$K_{m} = \frac{1}{2 \cdot \pi} \cdot \left[\ln \left[\frac{D^{2}}{16 \cdot h \cdot d} + \frac{\Phi + 2 \cdot h^{\frac{2}{2}}}{8 \cdot D \cdot d} - \frac{h}{4 \cdot d} \right] + \frac{K_{ii}}{K_{h}} \cdot \ln \left[\frac{8}{\pi \cdot n - 1} \right] \right]$$

where

- K_m Spacing factor
- **D** spacing between parallel conductors, m
- d Diameter of grid conductor, m
- h Depth of ground grid conductor, m

Step Voltage Equation

$$E_s = \frac{\rho \cdot K_s \cdot K_i \cdot I_G}{L_s}$$

Spacing Factor for Step Voltage

$$K_{s} = \frac{1}{\pi} \left[\frac{1}{2 \cdot h} + \frac{1}{D+h} + \frac{1}{D} - 0.5^{n-2} \right]$$

Safe Design Criteria Actual Voltages less than Tolerable Voltages

Mesh Voltage

$$E_m < E_{touch50}$$

Step Voltage

$$E_s < E_{step50}$$

Major Changes in 2012 (?) Edition

- Clarify Some Information on Current Division (Curves)
- Correct Some Information on Conductors/Material Ampacity
- Benchmarks for Computer Software

Questions