

Sustainable Substation Solutions

IEEE Substation Conference

May 21, 2012

Jim Hogan, VP of Transmission & Distribution Marshall Bird, LEED® AP

Why Sustainable Sub?

LEED® - Like for Substation

- Trendy
- Benefits
- The Right Solution

Investigate Possibilities

Partner with Northeast Utilities

Project Introduction

Sherwood Substation Overview

- 115-kV/13.8- kV Substation in Westport, Connecticut
- Built on existing residential property
- Site drains to existing wetlands
- Located adjacent to Metro North commuter rail line park-n-ride lot
- Study done in parallel with conventional design and construction
- Sherwood Substation built in 2011 using standard design criteria

Project Introduction

Sustainable Substation Initiative

- Concepts modeled after:
 - LEED® Reference Guide
 - Sustainable Sites Initiative
- Reasons for the Initiative
 - Lack of utility green building standards
 - Underutilization of sustainable building practices in substation design
 - Demand environmental responsibility

Overview

Sustainable Practices

- Site Development
- Stormwater Management
- Material Strategies
- Control Building Optimization
- Electric Vehicle Integration
- Public Education and Awareness

www.burnsmcd.com

Site Development

Site Selection

- Select Brownfield/ Redevelopment Sites
- Avoid Sensitive Ecological Areas
 - Wetlands
 - Riparian Buffer Zones
 - Endangered/Protected Species
 Habitat

Site Development

Sustainable Site Development

- Minimize Area of Disturbance
 - Compact electrical configurations
 - Minimize disturbance to surrounding undeveloped and vegetated areas
- Provide Erosion Control BMPs
 - Prevent excessive sedimentation
- Shield Station Lighting
- Minimize Heat Island Effect

Site Development

Water Efficient Landscaping

- Choose Native Plants
- Specify Plant Types that Minimize Erosion

Stormwater Management

Goals

- Control stormwater rates
- Remove 80% or more of Total Suspended Solids
- Minimize erosion of developed areas
- Exceed minimum municipal or state regulations

Pervious Pavement for Driveways

Sedimentation Basin

Stormwater Management

Stormwater Management Within Substation Fence

- Use Grass Pavers Where Practical
- Plant with Low Growing Native Vegetation

YARD SURFACING SECTION

Stormwater Management

Grass and Gravel Pavers

- Benefits
 - Reduce impervious areas
 - Promote infiltration
 - Stabilize drive surface
 - Reduce Heat Island effect
 - Improve aesthetics

- Drawbacks
 - Increase maintenance procedures inside substations

Stormwater Benefits

- Meet or Exceed Required Stormwater Design Requirements
- Purchase/Use Smaller Plots of Land
- Less Disturbance and Erosion Potential
- Simplify Permitting Approval Efforts with Smaller Footprints

Material Strategies

Construction Waste Management Plan

- Waste Recycling and Landfill Diversion
 - Wood
 - Metal
 - Concrete
 - Masonry
 - Asphalt
- Source Reduction
- Coordination Between All Contractors

Material Strategies

Recycled Content Building Materials

- Fly Ash in Concrete
- Reclaimed Crushed Concrete
- High Recycled Content Steel
- Recycled Plastics
 - Block retaining walls
 - Pipe
 - Geogrids and geotextiles

Material Strategies

Regional Materials and Local Suppliers

 Reduction in environmental impact of transportation/shipping

Vendor Selection

- Sustainable Manufacturing
- Responsible Business Practices

Control Building Optimization

Control Building Opportunities

- Building Envelope
 - Increased Insulation
 - Higher R-value
- HVAC
 - Geothermal Heat Pump
- Lighting System
 - High Efficiency Lighting
 - Led Lighting Fixtures
- Auxiliary Power
 - Photovoltaic Panels
 - Small Wind Turbines

Electric Vehicle Integration

Charging Stations

- Possible Installation Locations
 - Commuter Parking Lots
 - Parking Garages
 - Shopping Centers
 - Residential Buildings
 - Office Complexes

Types of Charging Stations

- Quick Charge DC Charging Stations
- Slow Charge AC Level II

Public Education and Awareness

Partnership with Local Schools

- Utility Involvement in the Community Highlighting:
 - Substation purposes and need
 - Sustainable practices used in the substation
 - Renewable energy projects

Display Boards

- Locations
 - Substations
 - Charging station locations

Study Site Layout

Cost

- Est. Traditional Substation Cost: \$9.2 mil
- Est. Sustainable Substation Cost: \$9.35 mil
- Estimated Cost Increase: 1.0%

Next Steps

- Implementation
- Performance Review
- Cost Evaluation
- Bidding With This Design
- Request LEED
 Accreditation for Utility
 Projects

Questions?

