

IEEE ENERGY CONVERSION CONGRESS & EXPO | PITTSBURGH, PA, USA | SEPTEMBER 14-18, 2014

Harmonic Stability in Renewable Energy Systems: An Overview

Frede Blaabjerg and Xiongfei Wang Department of Energy Technology Aalborg University, Denmark fbl@et.aau.dk, xwa@et.aau.dk

Outline

Introduction

- State-of-the-art
- Harmonic stability concept

Modeling and Analysis of Harmonic Stability

- Modeling of power system components
- Harmonic stability analysis

Mitigation of Harmonic Instability

- Passive damping of filters
- Active damper
- Conclusions

State-of-the-Art

Power Electronics Enabling Sustainable and Flexible Power Grids

HARMONIC STABILITY IN RENEWABLE ENERGY SYSTEM-FREDE BLAABJERG 3 | 17.09.2014

State-of-the-Art

Wideband controller interactions of converters – harmonic stability

HARMONIC STABILITY IN RENEWABLE ENERGY SYSTEM-FREDE BLAABJERG 5 | 17.09.2014

- Re{Y_o}=0, critically stable (resonance)
- Re{Y_o}<0, unstable with amplified resonance

AALBORG UNIVERSITET

Modeling and Analysis of Harmonic Stability

- Modeling of power system components
- Harmonic stability analysis

AALBORG UNIVERSITET

Traditionally Sine Wave →**Currently Square Wave**

Power Electronics

Passive Filters

Sinusoidal

Square

Transformers

Power Lines & Cables

Modeling of Power System Components

Lumped parameter – Π model (Γ model, T model)

- Distributed parameter (traveling wave models)
 - Bergeron model single frequency model
 - only meaningful at the specified steady-state frequency
 - Frequency dependent (mode) distributed resistance
 - only accurate for modeling balanced systems
 - Frequency dependent (phase) most accurate model

AC Power-Electronics-Based Power System

- Voltage-controlled inverter system voltage and frequency regulation
- Current-controlled inverter unity power factor operation
- Harmonic instability current/voltage controller interactions of inverters

Impedance-Based Analysis and Control

Experimental results – unstable case

AALBORG UNIVERSITET

Inverter output currents

HARMONIC STABILITY IN RENEWABLE ENERGY SYSTEM-FREDE BLAABJERG 15 | 17.09.2014

Harmonic Stability Analysis

Harmonic Stability Analysis Tools

- Component Connection Method (CCM) state-space matrix and eigenvalues
 - ✓ Generalized to multi-bus power system
- Impedance-based analytical approach frequency-domain analysis
 - ✓ Balanced three-phase system SISO transfer functions
 - ✓ Generalized Nyquist stability criterion is required for MIMO systems

AALBORG UNIVERSITET

Harmonic Stability Analysis

Impedance-Based Analysis and Control

- Identify the effect of each inverter by impedance-based modeling
- Minor-loop gain composed by the impedance ratio

-20

-30

-40 ∟ -25

-20

-15

-10

-5

0

Real Axis

5

10

15

20

HARMONIC STABILITY IN RENEWABLE ENERGY SYSTEM-FREDE BLAABJERG 18 | 17.09.2014

-0.5

-1

-1.5 -3

-2

-1

0

Real Axis

1

2

3

Impedance-Based Analysis and Control

Experimental results – stable case

AALBORG UNIVERSITET

Inverter output currents

AALBORG UNIVERSITET

Mitigation of Harmonic Instability

- Passive damping of filters
- Active damper

Mitigation of Harmonic Instability

Passive Damping for Output Filters of Converters

AALBORG UNIVERSITET

Passive Damping for Output Filters of Converters

Experimental results

AALBORG UNIVERSITET

Mitigation of Harmonic Instability

Active Damper

- Damping of harmonic instability, no low-order harmonic filtering
- Low-power, high-frequency, high-bandwidth, plug-and-play
- ✓ Same hardware topology with APF
- ✓ High-frequency output current needs new design of output filters

Experimental Results

Stabilizing interactions of harmonic resonant current controllers

AALBORG UNIVERSITET

HARMONIC STABILITY IN RENEWABLE ENERGY SYSTEM-FREDE BLAABJERG 24 | 17.09.2014

Conclusions

AALBORG UNIVERSITET

- Renewable energy systems power electronics based power systems
- Pulse width modulation of power converters high-order harmonics
- Controllers interactions of power converters harmonic instability
- Impedance-based method controller-design-oriented analysis tool
- Active damper a promising power system stabilizer

Future trends

- Advanced modeling of wind power converters Linear Time-Periodic (LTP) models
- System-level harmonic stability analysis complex renewable power plants structure
- Resonance detection is the key for active damper

References

AALBORG UNIVERSITET

- [1] X. Wang, F. Blaabjerg, and W. Wu, "Modeling and analysis of harmonic stability in an AC power-electronics-based power system," *IEEE Trans. Power Electron.*, vol. 29, no. 12, pp. 6421-6432, Dec. 2014.
- [2] X. Wang, F. Blaabjerg, M. Liserre, Z. Chen, J. Li, and Y. W. Li "An active damper for stabilizing power electronics based AC systems," *IEEE Trans. Power Electron.*, vol. 29, no. 7, pp. 3318-3329, Jul. 2014.
- [3] X. Wang, F. Blaabjerg, and M. Liserre, "An active damper to suppress multiple resonances with unknown frequencies," in *Proc. APEC* 2014, pp. 2184-2191, 2014.
- [4] X. Wang, F. Blaabjerg, and P. C. Loh, "Design-oriented analysis of resonance damping and harmonic compensation for LCL-filtered voltage source converters," in *Proc. IPEC* 2014, 216-223, 2014.
- [5] X. Wang, F. Blaabjerg, and P. C. Loh, "An impedance-based stability analysis method for paralleled voltage source converters," in *Proc. IPEC* 2014, 1529-1535, 2014.
- [6] X. Wang, F. Blaabjerg, and P. C. Loh, "Analysis and design of grid-current-feedback active damping for LCL resonance in grid-connected voltage source converters," in Proc. ECCE 2014, 373-380, 2014.
- [7] X. Wang, F. Blaabjerg, and P. C. Loh, "Proportional derivative based stabilizing control of paralleled grid converters with cables in renewable power plants," in *Proc. ECCE* 2014, 4917-4924, 2014.
- [8] X. Wang, F. Blaabjerg, Z. Chen, and W. Wu, "Resonance analysis in parallel voltage-controlled distributed generation inverters," in *Proc. APEC* 2013, 2977-2983, 2013.
- [9] X. Wang, F. Blaabjerg, Z. Chen, and W. Wu, "Modeling and analysis of harmonic resonance in a power electronics based AC power system," in *Proc.* ECCE 2013, 5229-5236, 2013.
- [10] R. Beres, X. Wang, F. Blaabjerg, C. L. Bak, and M. Liserre, "A review of passive filters for grid-connected voltage source converters," in *Proc. IEEE APEC* 2014, pp. 2208-2215, 2014
- [11] R. Beres, X. Wang, F. Blaabjerg, C. L. Bak, and M. Liserre, "Comparative evaluation of passive damping topologies for parallel grid-connected converters with LCL filters," in *Proc. IPEC* 2014, pp.3320-3327, 2014.
- [12] R. Beres, X. Wang, F. Blaabjerg, C. L. Bak, and M. Liserre, "Comparative analysis of the selective resonant LCL and LCL plus trap filters," in *Proc. OPTIM* 2014, pp.740-747, 2014.
- [13] R. Beres, X. Wang, F. Blaabjerg, C. L. Bak, and M. Liserre, "New optimal design method for trap damping sections in grid-connected LCL filters," in Proc. ECCE 2014, pp. 3620-3627, 2014.
- [14] J. Kwong, X. Wang, and F. Blaabjerg, "Impedance-based analysis and design of harmonic resonant controller for a wide range of grid impedance," in Proc. PEDG 2014, pp.1-8, 2014.
- [15] J. Kwong, X. Wang, C. L. Bak, and F. Blaabjerg, "Modeling and grid impedance variation analysis of parallel connected grid-connected inverter based on impedance-based harmonic analysis," in *Proc. IECON* 2014, in press, 2014.

Thank You! Questions?

" THE HIDDEN HARMONY IS BETTER THAN THE OBVIOUS "

- P. PICASSO

www.harmony.et.aau.dk