

Risk of dc-side instabilities in VSC-based HVDC systems

Gustavo Pinares Massimo Bongiorno Chalmers University of Technology

Outline of the presentation

- 1. Background and motivation
- 2. VSC-HVDC modelling for eigenvalue analysis
- 3. Frequency domain modelling
- 4. Conclusions

Why HVDC systems and VSC?

Gotland, 1954 (figure from ABB)

Main advantage

Suitable for the transmission of high amounts of power over long distances.

Challenges

Problems when VSCs are interconnected through cables? Focused on the dc network dynamics

Dynamic issues in dc networks?

Simulated cases

Ramp up of the power transfer from 0 to 600 MW in both directions for:

•High and low DVC gains and,

•50 and 100 km cable length

Simulations in a point to point HVDC

Outline of the presentation

- 1. Background and motivation
- 2. VSC-HVDC modelling for eigenvalue analysis
- 3. Frequency domain modelling
- 4. Conclusions

Eigenvalue calculations – impact of power flow and DVC gains

Power limit vs ac system strength

SCR of the ac system to which the VSC that controls the direct voltage is connected.

For the same 50 km cable, power limit increases:

- •As the Short Circuit Ratio (SCR) increases.
- •As with low direct-voltage controller gains.

Outline of the presentation

- 1. Background and motivation
- 2. VSC-HVDC modelling for eigenvalue analysis
- 3. Frequency domain modelling
- 4. Conclusions

Small signal model

VSC-HVDC as a SISO feedback system

Passivity on feedback systems

 If a system does not store more energy than what it is supplied, the system is passive. If a system dissipates energy, the system is dissipative. Examples:

• If $abs(angle[F(j\omega)]) \le 90^\circ$ and F(s) is stable, then, the system is passive

Passivity on feedback systems

 If a system does not store more energy than what it is supplied, the system is passive. If a system dissipates energy, the system is dissipative. Examples:

• If $abs(angle[F(j\omega)]) \le 90^\circ$ and F(s) is stable, then, the system is passive

Conclusions

2014 2014 IEEE ENERGY CONVERSION CONGRESS & EXPO PITTSBURGH, PA, USA I SEPTEMBER 14-18, 2014

DC network instability can occur and it is related to:

•The physical characteristics of the dc grid.

•The operating point.

- •The controller structure.
- •The strength of the ac system.

Frequency domain analysis shows that:

•The origin of the instability is the VSC subsystem which turns non passive in certain conditions.

•Instability may occur if the dc side resonance coincides with a negative VSC conductance.

Thanks for your attention!

Important equations

VSC subsystem transfer function: $F(s) = \frac{\Delta i_{\rm dc1}^*}{\Delta u_1} = -\frac{\alpha_1 i_{\rm f10}^d L_{\rm f1} k_{\rm pe1}}{e_{10}} \left(\frac{s+z_1^d}{s+\alpha_1}\right)$

$$z_1^d = 2\frac{R_{\rm t1}}{L_{\rm t1}} - \frac{u_{\rm s10}^d}{i_{\rm f10}^d L_{\rm t1}}$$

DC grid subsystem transfer function:

$$G(s) = \frac{C_{\text{eq}}^{-1}n(s)}{(s + \omega_{c1} + \omega_{c2})(d(s) + \omega_{c1}\omega_{c2}) + \delta}$$
$$n(s) = s^2 + (\omega_{\text{rl}} + \omega_{c2})s + \omega_{\text{lc}}^2 + \omega_{\text{rl}}\omega_{c2}$$
$$d(s) = s^2 + \omega_{\text{rl}}s + 2\omega_{\text{lc}}^2$$

Simplified dc grid subsystem transfer function:

$$\widetilde{G}_0(s) = \frac{C_{\text{eq}}^{-1}n(s)}{s \times d(s)}$$

Publications

- I. G. Pinares, T. A. Le, L. Bertling-Tjernberg, C. Breitholtz, A. Edris, "On the analysis of the dc dynamics of multi-terminal VSC-HVDC systems using small signal modeling," *IEEE Power Tech conference*, Grenoble, France, 16-20, June, 2013.
- II. G. Pinares, T. A. Le, L. Bertling-Tjernberg, C. Breitholtz, "Analysis of the dc Dynamics of VSC-HVDC Systems Using a Frequency Domain Approach," presented at IEEE Asia Pacific Power Energy Engineering Conference, Hong Kong, China, 8-11, December, 2013.
- III. G. Pinares, "Analysis of the dc Dynamics of VSC-HVDC Systems Connected to Weak AC Grids Using a Frequency Domain Approach," submitted to the Power Systems Computation Conference PSCC, Wroclaw, Poland, 18-22, August, 2014.