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Why HVDC systems and VSC?

Problems when VSCs are interconnected through cables?

Challenges

Gotland, 1954 
(figure from ABB)

Main advantage
Suitable for the transmission 
of high amounts of power 
over long distances.

Focused on the dc network dynamics
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Dynamic issues in dc networks?
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mitigation proposal [Tang, 2003]
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AC system – VSC 
interactions

dc network dynamics 
in HVDC systems
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Simulations in a point to point HVDC 

Vac=300 kV
Vdc= ±300 kV

Prated = 600 MW

Simulated cases
Ramp up of the power transfer from 0 to 600 MW in both directions for:
•High and low DVC gains and, 
•50 and 100 km cable length
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No problem for power increase from VSC2 to VSC1!
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Simulations in a point to point HVDC
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Eigenvalue calculations – impact of 
power flow and DVC gains

Power reference changed at VSC2 from +1 to –1 pu

Pi-model

Power reference 
changed 
(positive)

Low DVC gains High DVC gains

Instability occurs 
when the power 
is below –0.81 
pu

im. part of around 
7 pu, i.e. 350 Hz
Resonance 
related poles!

50 km
Infinite ac 
system

Infinite ac 
system
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Low DVC gains
High DVC gains

Power limit vs ac system strength

For the same 50 km cable, power limit increases:
•As the Short Circuit Ratio (SCR) increases.
•As with low direct-voltage controller gains.

SCR of the ac system to 
which the VSC that 
controls the direct voltage 
is connected.
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Small signal model

VSC2 modelled 
as a constant 
power device

What are these resistances?
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VSC-HVDC as a SISO feedback system
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Passivity on feedback systems
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• If a system does not store more energy than what it is supplied, the system 
is passive. If a system dissipates energy, the system is dissipative. 
Examples:

• If abs(angle[F(j)])  90 and F(s) is stable, then, the system is passive
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Passivity on feedback systems
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• If a system does not store more energy than what it is supplied, the system 
is passive. If a system dissipates energy, the system is dissipative. 
Examples:

• If abs(angle[F(j)])  90 and F(s) is stable, then, the system is passive
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Frequency response of the dc grid 
subsystem
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Angle less than 
90 degrees

Resonance peak at 
7 pu (350 Hz)

The approximated dc grid 
subsystem is passive!
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Frequency response of the VSC 
subsystem
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VSC subsystem freq. response seen as 
an admittance

VSC conductance

Negative VSC 
conductance!

SCR=inf

SCR=5
SCR=3

Impact of SCR

Impact of the 
cable length

50 km100 km

150 km
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Conclusions
DC network instability can occur and it is related to:
•The physical characteristics of the dc grid. 
•The operating point. 
•The controller structure.
•The strength of the ac system.
Frequency domain analysis shows that:
•The origin of the instability is the VSC subsystem which turns 
non passive in certain conditions.
•Instability may occur if the dc side resonance coincides with a 
negative VSC conductance.
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Thanks for your attention!



Important equations
VSC subsystem transfer function:

DC grid subsystem transfer function:

Simplified dc grid subsystem transfer function:
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