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Interconnection of DER at 
Dense Populations
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Interconnection Issues 

• Voltage Regulation and Flicker:

– May exceeding voltage limits and inverters trip

– Voltage fluctuations and flicker due to intermittency

• Harmonics:

– Inverters individually satisfy PQ standards

– PQ standards can temporarily be exceeded.

– Inverters trip unexpectedly

• Attention Points on Standards and Interconnections

– Effect of background supply distortion

– Increased distortion due to a system resonance

– Micro-grids and weak networks

– Islanding times and algorithms

– Natural damping



Simple electrical network with one inverter.

Ub 

     Lb      Rb 

      R C 

    IPV 

 

Mechanisms of DER Inverter 
Interactions



Analysis of DER inverter 
resonance

Mechanism of Parallel and Series Resonance
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• Small current harmonics from large population of DER 

inverters excite parallel resonance in networks.

• Supply voltage harmonics increase with DER inverters 

due to series resonance.



Single-stage H-bridge PWM converter coupled to the grid with a low frequency 

(LF) isolation transformer (6 µF output capacitor)

Multi-stage PWM converter and high frequency link and transformer with 60 Hz 

unfolding bridge (3µF output capacitor)

Effect of DER Inverter 
Topology on Power Quality

Type B

Type A



PV Inverter Test Installation 
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Current

Voltage

Sinus Supply: L = 1 mH R = 0,3 ΩΩΩΩ

Measurement  Results
HF Link Inverter – Type A

NL(3%) Supply: L = 1 mH R = 0,3 ΩΩΩΩ EN50160 (8%): L = 1 mH R = 0,3 ΩΩΩΩ
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Voltage:- 200 V/div; Current:- 5 A/div

Time:- 4 ms/dive

C-home = 3 µF
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System Analysis Configuration
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Simulation Results VP-4

  
Simulated waveforms at two locations for the VP4 network section with 

average background distortion (Vmain – 2%) 
 

Average Dutch (3%) Supply
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Simulation Results VP-4

n 
Simulated waveforms at two locations for the VP4 network section with 

maximum allowable distortion 
 

Maximum EN50160 (8%) Supply Distortion
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Harmonics VP4 average 
pollution

VP4 Voltage and Current Harmonics with Dutch Average Distortion
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Advanced Smart DER 
Converter Controls

Generator Emulation Controls (GEC)

• Control PV inverters in a manner that emulates 
characteristics and behavior of traditional synchronous 
generators

GEC allows PV inverters to:

• Supply reactive power

• Active Power Filtering

• Support voltage stability through 
Volt / VAr control

• Perform voltage ride-through (VRT)

• V-f regulation for Micro-grid operation



GEC Concept Overview
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GEC Multi-Mode Operation
• Legacy Tie

– UL1741-compliant grid-tie operation

– Active Harmonic Filtering 

• Smart Tie
– Voltage Regulation support

– Programmable V-f windows

– Low-voltage ride-through

– Reactive power injection

– Ramping control and curtailment

– Active Harmonic Filtering

• Islanded - MicroGrid
– Voltage and frequency regulation 

– Automatic load sharing

– Black Start support

– Seamless transition to and from grid-tie

– Energy storage integration

– Active Harmonic Filtering
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LVRT Operation

• GEC control is implemented 
into grid connected and 
micro-grid applications 

• DER units stay connected 
through a low voltage 
transient and inject reactive 
power until voltage stabilize

• Units inject active power as 
soon as voltage is stable for 
a few cycles



Harmonic Mitigation with 
GEC-based Smart PV Inverter

Voltage THD at PCC is reduced from 9.2% to 4.3% by 
connecting the PV AC string with PQ mitigating algorithm

GEC Control structure of PQ mitigation algorithm



Duke Energy Smart Grid Lab

• Real Time Digital Simulator (RTDS) – 3 enhanced racks
• 32 core OPAL-RT real-time power simulator
• 90 kVA Ametek Grid Simulator and Amplifier
• 150 A with 120V, 208V, 480V 1&3 phase power supplies
• Amatek TerraSAS 10 kW PV SImulator
• High speed fiber connections between labs and server room
• Dedicated and secured private LAN for external data streams
• Raised floor access for power, communication and control cables
• 6 fast response large LCD Screens and image control
• Data storage devices and SCADA gateways
• Communications - Private HP Server for data analytics
• HP X820, 16-Core, Dual Processor Xeon Workstation
• Simulation tools including - PSS/E; ETAP; EMTP-RV; 
• RSCAD; PSCAD; Hypersim, RTLAB, etc.



Duke Energy Smart Grid Lab.
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Conclusions & 
Recommendations

• Small current harmonics from large population of DER 
inverters excite resonance in distribution networks.

• Background voltage harmonics increase with DER 
Inverters due to series resonance.

• Household and cable capacitance together with short-
circuit inductance can be dominant in resonance circuit

• Smart Inverters, emulating synchronous machine 
characteristics, can mitigate power quality issues

• Evaluate and test inverters with real-time HiL Testbeds

• Need to develop guidelines and standards for weak, 
Micro-grid or islanded network operations with variable 
impedances.
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