ICRA '07 Space Robotics Workshop 14 April, 2007

Terramechanics Based Analysis and Motion Control of Rovers on Simulated Lunar Soil

Kazuya Yoshida and Keiji Nagatani

Dept. Aerospace Engineering Graduate School of Engineering Tohoku University, Sendai, Japan

Apollo mission © NASA

Increasing Interest in Lunar Missions

- Exploration of the areas where Apollo or Luna did not go
- In-situ resource utilization
- Outpost for human habitation on Moon
- Technology demonstration and crew training for future Mars expeditions
 - Robotic precursor missions
 - Autonomous landing
 - Surface locomotion
 - Core sampling and excavation
 - Construction
 - International cooperation

Design and Control Issues for Lunar/Mars Rovers

- Mobility on Natural Terrain
- Traversability (Rocky obstacles, Slope climbing/traversing))
- Navigation (Teleoperation v.s. Autonomy)
- Positioning, Localization, Map Generation...
- In-Situ Analysis
- Sample Acquisition and Handling, Preprocessing
- Power, Communication
- Versatility to Hostile Environment
 (Thermal, Dust., eg. –170~+130°C on Moon)

Rover Test Beds since 1997

Research Focus on Lunar/Planetary Rovers

Mechanical Design

- Choice of locomotion mode: wheels, tracks, or legs
- Chassis design
- Traction Control
 - Makes difference in performance
 - Slip on loose soil
- Navigation
 - Path planning with stability & slip criteria
 - Path following with slip compensation

Experiment of Slip-Based Traction Control

• Without Slip control

With Slip control

Even though the rover travels slowly, the phenomena around the wheels are dynamic...

Side slip phenomena is very interesting, which should studied well.

Slip is a key state variable

Slip Ratio

Slip Angle

$$\beta = \tan^{-1} \frac{v_y}{v_x}$$

Two Modeling Approaches for the Study of Soil Behavior under a Wheel

Discrete Element Method (DEM)

Continuum Modeling

- Bekker 1956
- Wong 1978

Traction Model for a Rigid Tire on Soft Soil

(Bekker 1956, Wong 1978)

$$W = rb \int_{\theta_r}^{\theta_f} \{\sigma(\theta)\cos\theta + \tau(\theta)\sin\theta\} d\theta$$
$$DP = rb \int_{\theta_r}^{\theta_f} \{\tau(\theta)\cos\theta - \sigma(\theta)\sin\theta\} d\theta$$
$$T = r^2 b \int_{\theta_r}^{\theta_f} \tau(\theta) d\theta$$
$$\tau(\theta) = (c + \sigma \tan\varphi) (1 - e^{a(s)})$$
$$a(s) = -\frac{r}{k} [\theta_f - \theta - (1 - s) (\sin\theta_f - \sin\theta)]$$

Traction Model for a Rigid Tire on Soft Soil

(Bekker 1956, Wong 1978)

$$W = rb \int_{\theta_r}^{\theta_f} \{\sigma(\theta)\cos\theta + \tau(\theta)\sin\theta\} d\theta$$
$$DP = rb \int_{\theta_r}^{\theta_f} \{\tau(\theta)\cos\theta - \sigma(\theta)\sin\theta\} d\theta$$
$$T = r^2 b \int_{\theta_r}^{\theta_f} \tau(\theta) d\theta$$
$$\tau(\theta) = (c + \sigma \tan\varphi) (1 - e^{a(s)})$$
$$a(s) = -\frac{r}{k} \left[\theta_f - \theta - (1 - s) (\sin\theta_f - \sin\theta) \right]$$

Key parameters:

- c: soil cohesion
- φ : friction angle
- k: shear deformation modulus

Angle of Internal Friction

Single Wheel Test Bed

Wheel	Diameter: 184[mm], Width: 107[mm]
Slip Ratio	0 – 0.8
Slip Angle	0 – 45 degrees
Soil	Lunar Regolith Simulant

Experimental Results (longitudinal force)

Experimental Results (side force)

(Ishigami, Nagatani, Yoshida, J. of Field Robotics, 2007)

Multibody Dynamics with
Vehicle
DynamicsMultibody Dynamics with
a Moving Base
+ Multi Contact, Gravity

Slope Climbing Experiment at JAXA, Aerospace Research Center

Lunar Regolith Simulant arbitrary inclination 0-30 deg or over

Slope Traversing Experiment at JAXA, Aerospace Research Center

Experimental trace

Red is simulation, blue is experiment

Lunar Regolith Simulant arbitrary inclination 0-30 deg or over

Research Focus on Lunar/Planetary Rovers

Mechanical Design

- Choice of locomotion mode: wheels, tracks, or legs
- Chassis design
- Traction Control
 - Makes difference in performance
 - Slip on loose soil
- Navigation
 - Path planning with stability & slip criteria
 - Path following with slip compensation

Path Planning Issue

Evaluate candidate paths by dynamic simulation which takes both longitudinal and lateral slip effects into account.

Model for Path Following Control

Sideslip Compensation

Slope Traversal (10 deg)

With path-following control and slip compensation Video presentation is 4-time faster than the real motion

Conditions of Experiments

Slope angle [deg]	5.0 / 7.5 / 10.0
Sensor accuracy of SLC [mm]	3.44@1.5 [m]
Wheel angular velocity [rad/sec]	0.30
Wheel radius (including paddles) [mm]	113.0
Approx. total weight of the rover [kg]	15.0
Control loop cycle time [s]	0.16-0.17

Experimental result (10 deg slope)

Summary

- In this presentation, the state-of-art study on terramechanics based analysis and motion control of rovers are overviewed.
- Models for wheel traction mechanics on loose soil is focused, where *slip* is a key state variable to describe the traction performance.
- Experimental data of the traction measurement on simulated lunar soil is presented for various slip ratios and slip angles.
- An example is illustrated for the path following control of a rover with compensating the side slips.

References

- Bekker, M. G. (1960), Off-The-Road Locomotion, The University of Michigan Press.
- Wong, J. Y. (1978), *Theory of Ground Vehicles*, John Wiley & Sons.
- Iagnemma, K. and Dubowsky, S. (2004), Mobile Robots in Rough Terrain : Estimation, Motion Planning, and Control with Application to Planetary Rovers (Springer Tracts in Advanced Robotics 12), Springer.
- G. Ishigami, A. Miwa, K. Nagatani and K. Yoshida (2007) "Terramechanics-based Model for Steering Maneuver of Planetary Exploration Rovers on Loose Soil" Journal of Field Robotics, vol.24, no.3, pp.233-250.

The Space Robotics Lab. Dept. of Aerospace Engineering Tohoku University, JAPAN Directed by Prof. Kazuya Yoshida yoshida@astro.mech.tohoku.ac.jp http://www.astro.mech.tohoku.ac.jp/home-e.html

<section-header>

Robotic Systems on ISS

The SPACE ROBOTICS Lab.

Planetary Exploration Rovers