IEEE ICRA, April 2007

Laboratory experimental validation of autonomous spacecraft proximity maneuvers

Prof. Marcello Romano

Mechanical & Astronautical Engineering Department U.S. Naval Postgraduate School, Monterey, California, USA mromano@nps.edu

Outline

- 1. Tasks and motivation
- 2. The Spacecraft Proximity Operations Facility
- 3. The 1st-generation spacecraft simulators
- 4. The 2nd-generation spacecraft simulators
- 5. Conclusions

Task and rationale of the on-going Researches

Design and build a Hardware-In-the-Loop testbed to validate GN&C algorithms for the proximity operations of small spacecraft, including autonomous docking and multispacecraft assembly

1960-1997-99 2001 2003/05 2005 2007 2007 2010-... Russian missions Japan ETS-VII China-UK Snap 1 AFRL XSS-10/11 _____ Nasa DART DARPA Orbital Express ATV to ISS NASA Project Constellation

Proximity Operations Facility *@* **Spacecraft Robotics Lab**

- 4.9 m by 4.3 m Epoxy Surface (Residual Gravity: ~10⁻³ g)
 S/C simulators float via air-pads
 Dynamics + Kinematics simulator
 - 1. Recreates weightlessness and frictionless condition in 2D
 - 2. Angular/linear momentum conservation respected
 - 3. Enables validation of Dynamics model and GNC algorithms, while they interact with real actuators/sensors/internal body motion dynamics
 - 4. Complementary to 3D analytical-numerical simulations & kinematics-only simulation facility

1st-generation Spacecraft Simulators (AUDASS)

		Size	Length and Width	0.4 [m]
			Height	0.85 [m]
			Mass	63 [Kg]
			Moment of Inertia about Y _{ch}	2.3 [Kg m ²]
		Propulsion	Propellant	Air
			Equivalent Storage Capacity	0.72 [m ³] @ 0.35 [Mpa]
			Operating Pressure, Thrust	0.35 [Mpa] (50 [PSI])
		get	Operating Pressure, Floating	0.24 [Mpa] (35 [PSI])
Camera	Space	poraft	Continuous Operation	20 - 40 [min]
No. Secure of the second	Juli pol		Prostion Wheel May Torque	0.45 [N]
A DECK	Vision PC Simu	lator	Reaction Wheel Max Angular Momentum	20.3 [Nms]
The second second		Electrical	Battery Type	Lithium-Ion
	Batteries	& Electronic	Storage Capacity	12 [Ah] @ 28[V]
		Subsystem	Continuous Operation	~ 6 [h]
Control PC			Computers	2 PC104 Pentium III
Control 1 C		Sensors	IMU	Crossbow 400CC
DU			Vision Sensor	custom developed
IMU 🦷			CMOS Camera	Pixelink PL-A471
		and the second	Vision Sensor Range	40 [deg]
Reaction		Docking I/F	Max Axial Misalignment	+/- 7.62 [cm]
W/11		Capture	Max Lateral Misalignment	+/- 5.08 [cm]
wheel		Tolerances	Max Angular Misalignment (Pitch, Yaw, Roll)	+/- 5 [deg]
Tank Thruster (1 of 8)	Docking I/F (Passive portion)			
Chaser	Docking I/F	I m		
Sugaanafi	(Active portion)	stick		
spacecraji	(richter portion)			
Simulator	E poxy	Floor		
~				

1st-generation simulator: Vision Based Navigation

Resulting overall sample frequency = ~ 5 Hz

1st-generation simulator: Fusing Vision Sensor and IMU Data Discrete Kalman Filters implementation for the relative navigation, fusing vision and IMU data Attitude $\begin{cases} \mathbf{x}_{k} = \begin{bmatrix} \theta_{k} & \gamma_{k} \end{bmatrix}^{T}, \ \mathbf{u}_{k} = \tilde{\theta}_{k} \\ H_{[k-delay(k)]} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \ \mathbf{v}_{[k-delay(k)]} = \begin{bmatrix} v_{\theta \ cam \ [k-delay(k)]} \end{bmatrix} \end{cases}$ $\mathbf{Translation} \left\{ \mathbf{x}_{k} = \begin{bmatrix} {}^{tg} x_{ch \, k} & {}^{tg} \dot{x}_{ch \, k} & \boldsymbol{\beta}_{xk} & {}^{tg} z_{ch \, k} & {}^{tg} \dot{z}_{ch \, k} & \boldsymbol{\beta}_{zk} \end{bmatrix}^{T} \\ \mathbf{u}_{k} = \begin{bmatrix} \tilde{x}_{k} & \tilde{z}_{k} \end{bmatrix}^{T} \\ \boldsymbol{u}_{k} = \begin{bmatrix} \tilde{x}_{k} & \tilde{z}_{k} \end{bmatrix}^{T} \\ \boldsymbol{u}_{[k-delay(k)]} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \\ \boldsymbol{v}_{[k-delay(k)]} = \begin{bmatrix} v_{x \, cam \, [k-delay(k)]} & v_{z \, cam \, [k-delay(k)]} \end{bmatrix}.$

1st-generation simulator: Chaser Spacecraft Control

1st-generation simulator: Test 1: Trajectory Tracking

9

1st-gen. simulator: Test 2: Autonomous Docking Maneuver

MOVIE

1st-gen. simulator: Test 2: Auto. Docking Maneuver (details)

11

Marcello Romano

2nd-generation Spacecraft Simulator

iGPS sensor		Length and Width	.30 [m]
	Size	Height	.69 [m]
		Mass	37 [kg]
		Moment of Inertia Z_{veh}	.75 [kg m ²]
		Propellant	Air
Router	Propulsion	Equiv Storage Cap @ 21	.002 [m ³]
		[MPa] (3000 PSI)	827 [MDa]
		Thrust per Thruster	28 [N]
Dual PC104		MSGCMG Max Torque	.668 [Nm]
	Attitude Control	MSGCMG Max Ang.	.098 [Nms]
		Momentum	
2 Lilen		Battery Type	Lithium-Ion
Batteries	Electrical &	Storage Cap @ 28 [V]	12 [Ah]
Datteries	Electronic	Computers	2 PC-104,
Dual			Pentium III
		Fiber Optic Gyro Bias	±20°/hr
	Sensors	LIDAR	SICK 360 °
		iGPS Sensor Accuracy	<.050 [mm]
Dual		Accelerometers Bias	±8.5x10 ⁻⁵ [g]
3000 psi		Propellant	Air
Air Cylinders		Equiv Storage Cap @ 21	.002 [m³]
	Floatation	[MPA] (3000 PSI)	
		Operating Pressure	.35 [MPa]
		Linear Air Bearings	32 [mm]
4 Air Pads		Diameter	

2nd-generation Spacecraft Simulator [ctnd]

Mini Control Moment Gyroscopes One of the two rotating thrusters

2nd-generation simulator: attitude dynamics

 Equation of motion for a rigid spacecraft with a CMG

H_s + ω×H_s = T_{ext}
H vector takes into account both main vehicle and CMG angular momentum

 $\mathbf{H}_{s} = \mathbf{J}\boldsymbol{\omega} + \mathbf{h}$ $\mathbf{h} = h_{w} [0, \cos\delta, \sin\delta]^{\mathrm{T}}$

The torque from the CMG is

 $\mathbf{J}_{Z}\dot{\mathbf{\omega}}_{Z} = \mathbf{T}_{CMG_{Z}} = -\dot{\mathbf{h}}_{Z} = \mathbf{u}_{Z}$ The CMGs' steering law is

$$\dot{\mathbf{h}}_{\mathrm{Z}} = h_{\mathrm{W}} \cos \delta \dot{\delta} = -\mathbf{u}_{\mathrm{Z}}$$

2nd-generation simulator: rotational dynamics

- State Variables
 x, y, θ
- Control Parameters • $F_1, F_2, \alpha_1, \alpha_2, T_{MSGCMG}$

Dynamic Equations

- $\stackrel{\bullet}{=} \ddot{X} = -F_1 \cos\left(\alpha_1 + \theta\right) + F_2 \cos\left(\alpha_2 + \theta\right)$
- $\bigstar \ddot{Y} = -F_1 \sin(\alpha_1 + \theta) + F_2 \sin(\alpha_2 + \theta)$

•
$$\ddot{\theta} = T_{CMG} - F_1 d_1 \sin(\alpha_1) - F_2 d_2 \sin(\alpha_2)$$

2nd-generation simulator: Preliminary experiment

16

Marcello Romano

Conclusions

- A ProxOps Simulation facility and two kinds of Robotic Spacecraft Simulators have been developed
- Experiments of autonomous tracking and docking maneuvers were performed
- The research has a critical educational value
- Future development: multi-spacecraft assembly & reconfiguration

For more information:

M.Romano, D.A. Friedman, T.J. Shay, Laboratory Experimentation of Autonomous Spacecraft Approach and Docking to a Collaborative Target. Accepted for publication. To Appear. AIAA Journal of Spacecraft and Rockets.

J. Hall, M. Romano, A Novel Robotic Spacecraft Simulator with Mini-Control Moment Gyroscopes and Rotating Thrusters. Submitted toe IEEE AIM 2007.

Acknowledgment

MS and Doctoral Students Sponsors: AFRL, NPS-RO

