

Terrain Classification for Autonomous Robot Mobility from Safety, Security, Rescue Robotics to Planetary Exploration

<u>Andreas Birk</u>, Todor Stoyanov, Yashodhan Nevatia, Rares Ambrus, Jann Poppinga, and Kaustubh Pathak

> Jacobs University Bremen http://robotics.jacobs-university.de

Institutional Name Change

and the second second

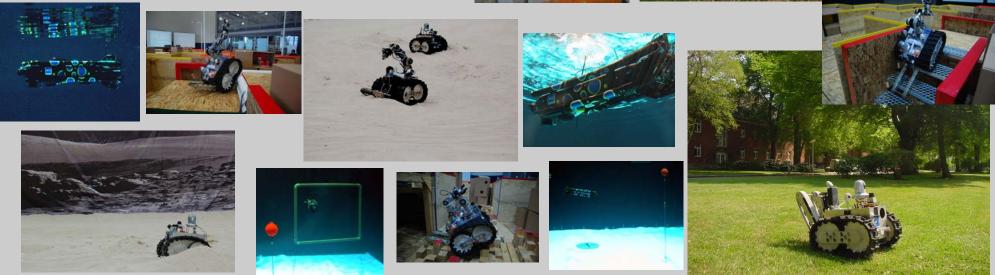
Please note the name-change of our institution.

The Swiss Jacobs Foundation invests 200 Million Euro in *International University Bremen (IUB)*. To date this is the largest donation ever given in Europe by a private foundation to a science institution. In appreciation of the benefactors and to further promote the university's unique profile in higher education and research, the boards of IUB have decided to change the university's name to *Jacobs University Bremen*.

Overview

- Safety, Security, Rescue Robotics (SSRR)
- Jacobs robot: locomotion for rough terrain
- Navigation on rough terrain: detection of drivable ground

Research Focus of Jacobs Robotics: Autonomous Systems


developments from *mechatronics up to high level intelligence*

and the second of the second second

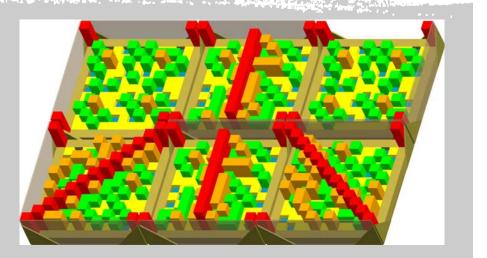
- Safety, Security, Rescue Robotics (SSRR)
- but also
 - planetary exploration
 - underwater robotics

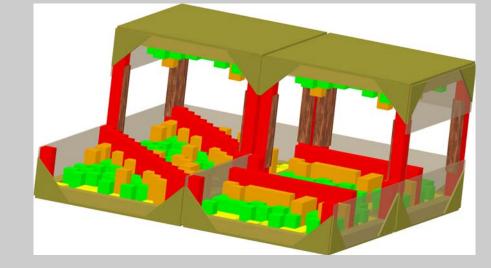
Jacobs University, previously International University Bremen (IUB)

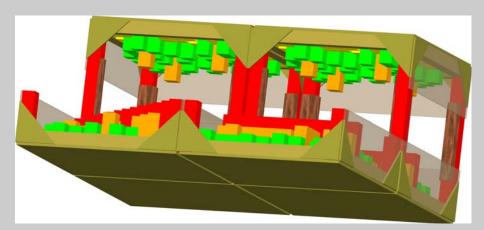
Safety, Security, Rescue Robotics (SSRR)

Jacobs University, previously International University Bremen (IUB)

Performance Testing and Evaluation

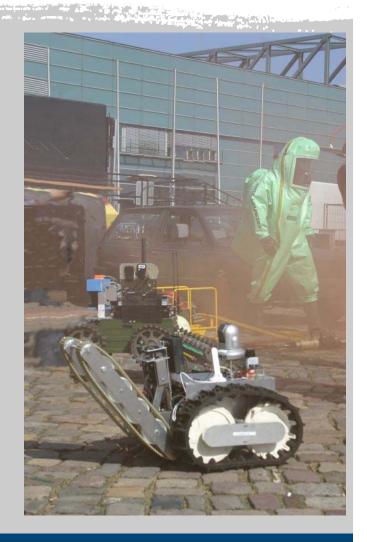

- Jacobs Test Arenas
 - one of six test sites worldwide
 - for mobile robot performance evaluation
- cooperation with US National Institute of Standards and Technologies (NIST)




Example NIST Test Element

- Random Step Field
 - wooden poles, loosely arranged
 - in different patterns (hill, diagonal, peaked)
 - with random pole length component
- good performance test for locomotion

Why working on Autonomous Systems and SSRR?

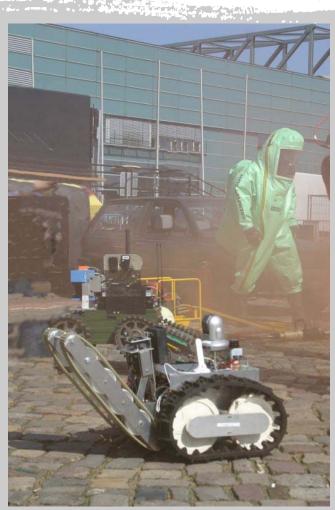


Safety, Security, Rescue Robotics

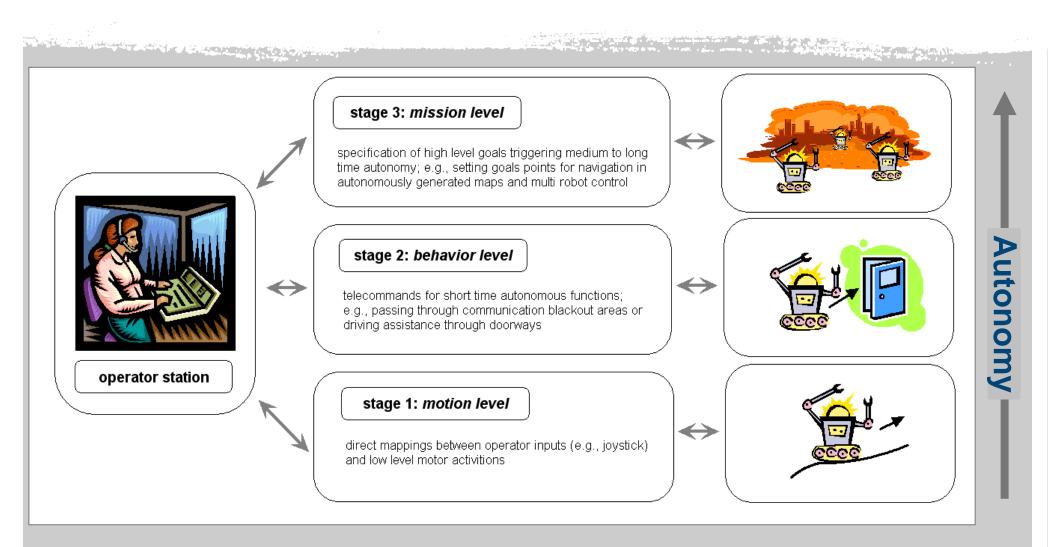
- covers the *basic research challenges* of robotics
 - advanced locomotion & manipulation
 - challenging perception & world modeling
- is application driven

And the second se

- but allows gradual development
 - today's systems are already very useful
 - every further development adds benefit


Why working on Autonomous Systems and SSRR?

Autonomy to


and the second second

- reuse components for user assistance
- handle communication dropout, respectively degradation
- enable single user operation of robot teams

Teleoperation Levels

Example

Robotics JACOBS UNIVERSITY

Jacobs team at **European Land Robot Trials (ELROB) 2007** Monte Ceneri, Switzerland

- urban scenario
 - ABC attack at folk festival

ANT STRATE LY, MARINE AND

- robots have to find and locate hazmat signs
- as indicators of "interesting" spots
- Jacobs: cooperative robot team
 - two land robots, one operator
 - autonomy allowing
 - navigation by operator defined goal points
 - resp. autonomous exploration
 - in robot generated maps
 - operator
 - choosing goal points
 - taking over with joystick tele-op for locomotion challenges (stairs, curbs, etc.)

Mobility in Unstructured Environments

locomotion

Contraction and provide the

- robots must be physically capable to handle rough terrain
- perception
 - robots must be able to detect drivable ground

Locomotion Mechatronics

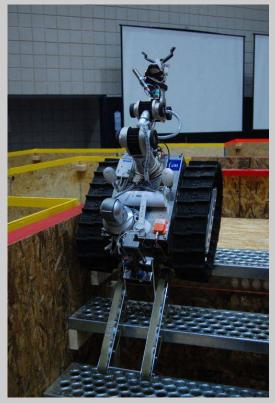

• complete in-house developments

based on CubeSystem

- open source
- collection of hard- & software components
- for rapid robot prototyping
- plus standard PC
- basic data
 - tracked drive
 - 50cm x 50cm footprint
 - 25kg weight, 15kg payload
 - 3h operation time

RoboCube a compact embedded controller

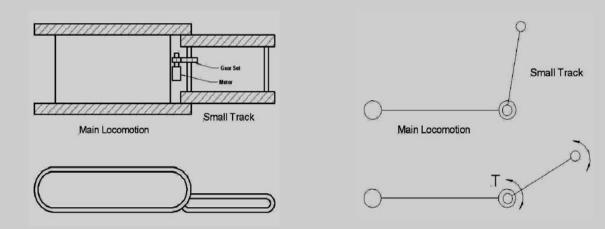
Locomotion unit: support flipper

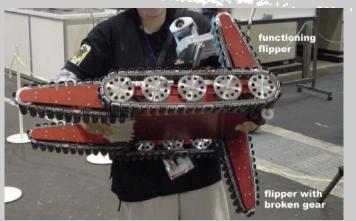

no ideal footprint for a rescue robot

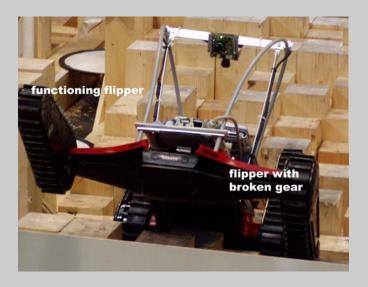
- large footprint
 - e.g. climbing up a rubble pile or stairs
 - maximize traction & prevent tilting over
- large footprint
 - negotiating narrow passages or doorways
 - prevent to get stuck.

common approach: flippers

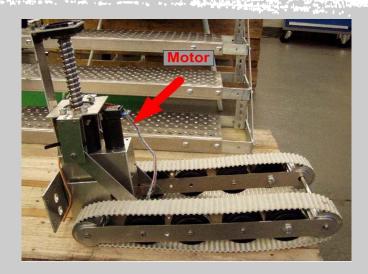
- additional support tracks
- can change their posture relative to the main locomotion tracks
- additional benefit: shift center of gravity

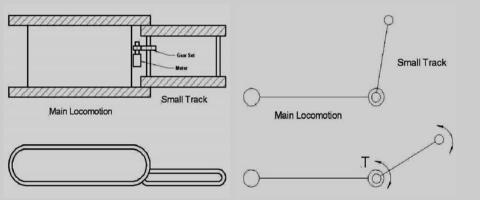


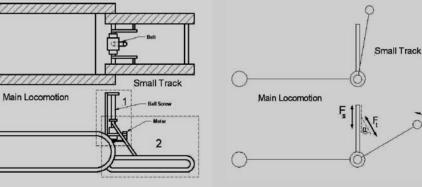

State of the art



- large torque needed
- shocks go directly to active joint
- consequences
 - high risk of broken transmissions
 - and/or overhead in weight & cost


Solution


standard design



novel mechatronic design for flippers: *link mechanism driven by a ballscrew*

- shocks are absorbed by a passive link
- much less motor torque required
 - with same flipper length, angular speed, etc. as classic design
 - an order of magnitude less force required

Jacobs Rugbot flipper

Being physically able is not enough...

European Land Robotics Trials (ELROB 2006)

- Hammelburg, Germany
- training camp for urban combat
- military organized

professional participants

- Qinetiq
- MacroSwiss
- Robowatch
- BASE 10 (RoboScout)
- Rheinmetall Land Systems
- Smith Engineering Ltd (MoonBuggy)
- Rheinmetall Defence Electronics
- Telerob
- Diehl
- Remotec
- Europ. Aeronautic Defence & Space (EADS)

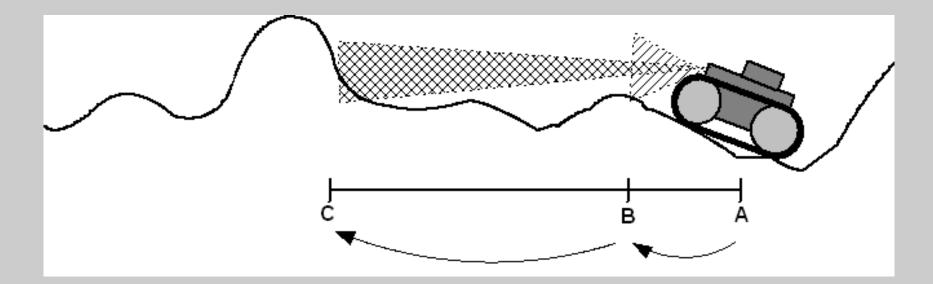
results

- easy stairs
 - outdoors, good visual conditions
 - 5 out of 13 made it
 - hard stairs
 - indoors, less good visual conditions
 - 2 out of 13 made it

Mobility in Unstructured Environments

locomotion

Contraction and provide the


- robots must be physically capable to handle rough terrain
- perception
 - robots must be able to detect drivable ground

Hierarchical Navigation Behaviors

- internal system parameters (A) -> reactive "emergency" behaviors
- short range perception (B) -> reactive obstacle behaviors
- long range perception (C) -> path planning

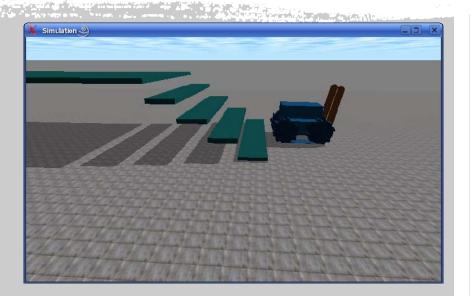
Know where you going...

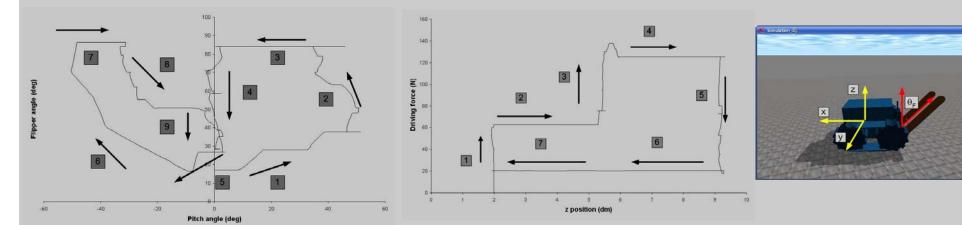
for example RoboCup Rescue:

- distinction between
- inclined floor (default for autonomy)
- random step field (nobody can handle them autonomously yet)

type A behaviors

- check inclination, backoff when critical
- measure motor currents to detect stall

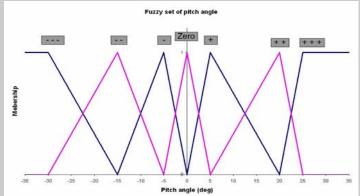

Other Type A Behaviors: Flipper Control

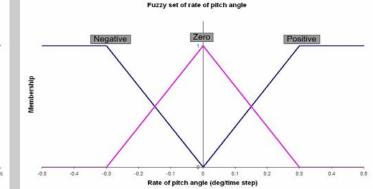


• determine human control strategies

The state of the second st

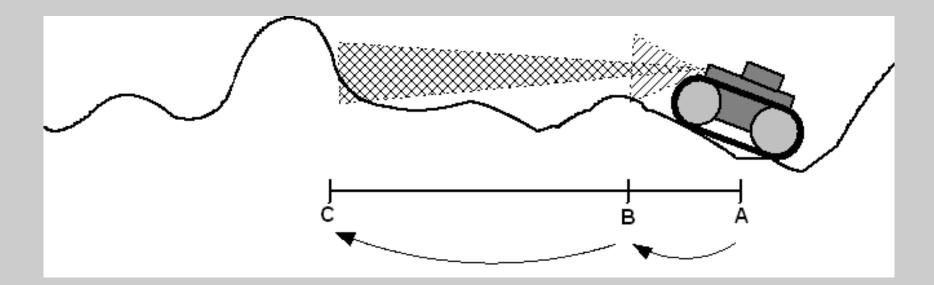
- give operator perfect viewing conditions
- record control input / output
- data from several users
- extract patterns
- turn them into a fuzzy controller





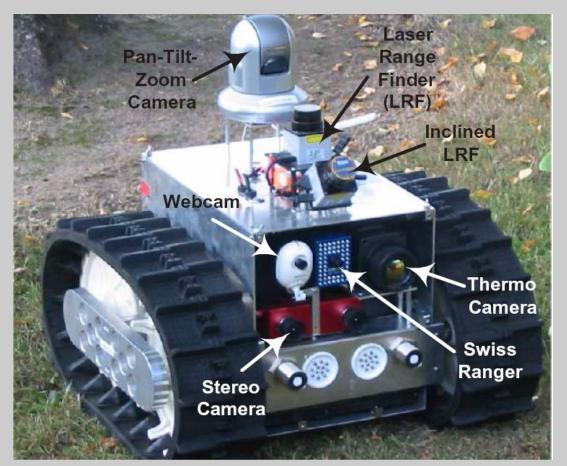
Flipper Control

- parameters
 - pitch α
 - its rate of change $\Delta \alpha$
 - flipper angle's rate of change $\Delta \theta$
- fuzzy rules
 - non-linear controller
 - rules as extracted from user recordings rather common sense
 - e.g., of the type "robot's nose pointing strongly up and fast increase in pitch => put flipper very fast down (i.e., avoid tilting over)"



$\Delta \alpha$	α	$\Delta \theta_F$		
negative		+		
negative		++		
negative	-	zero		
negative	zero	zero		
negative	+			
negative	++	zero		
negative	+ + +	zero		
zero		+		
zero		+++		
zero	-	zero		
zero	zero	zero		
zero	+	zero		
zero	++	+		
zero	+ + +	+		
positive		-		
positive				
positive	-	zero		
positive	zero	zero		
positive	+	zero		
positive	++	++		
positive	+ + +	+ + +		

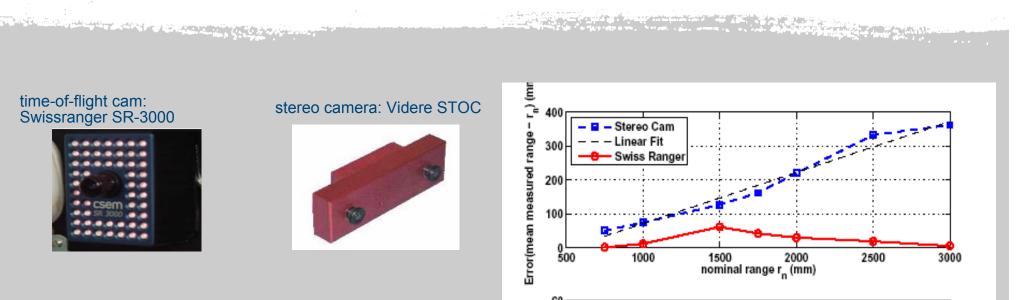
Hierarchical Navigation Behaviors



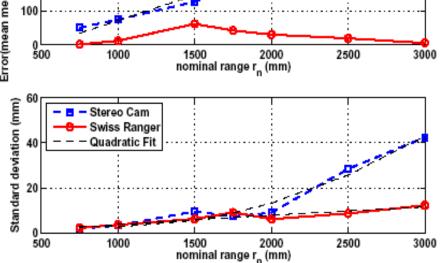
- internal system parameters (A) -> reactive "emergency" behaviors
- short range perception (B) -> reactive obstacle behaviors
- long range perception (C) -> path planning

3D Range Sensors for Terrain Classification

and the second second

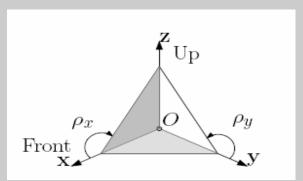

actuated LRF

- Hokuyo URG40 + tilt servo
- stereo camera
 - Videre STOC
- TOF camera
 - Swissranger SR-3000


		size		weight	power
3D URG40-LX	1:50mm, w:50mm, h:70mm			425 g	2.5 W
STOC	1:132mm, w:39mm, h:44mm			261 g	2.4 W
SR-3000	1:42.3, w:50, h:67mm			162 g	12 W ¹
	number of	sampling	fiel	d	range
	data points	rate	of vi	ew	c
3D URG40-LX	683×90	0.3 Hz	$240^{o} \times$	$\langle 90^{o}$	0.2 - 4 m
STOC	640×480	30 Hz	$70^o \times$	52^{o}	0.75 - 3 m
SR-3000	176×144	\leq 50 Hz ²	$47^o \times$	39^o	0.6 - 8 m ³

Fast but noise prone 3D data acquisition

	Swissranger	Stereo Camera
Manufacturer	CSEM	Videre Design
Model	SR-3000	Stereo-on-Chip (STOC)
Principle	Time of Flight (TOF)	Stereo images' disparity
Range	600 - 7500 mm	$686 - \infty \text{ mm}$
Horiz. Field of View	47^{o}	65.5^{o}
Vert. Field of View	39 ^o	51.5^{o}
Resolution	176×144	640×480



Classification based on Planar Hough Transform

use *Hough Transform for planes* going from point to parameter space

- discrete parameter space **PS** of bins
- bins with 3 parameters
 - two orientation angles ρ_x , ρ_y
 - plus distance *d* from origin
- for every range data point in point cloud **PC**
 - put a "vote" into each bin
 - that corresponds to a plane
 - passing through that point


```
for all point p \in PC do

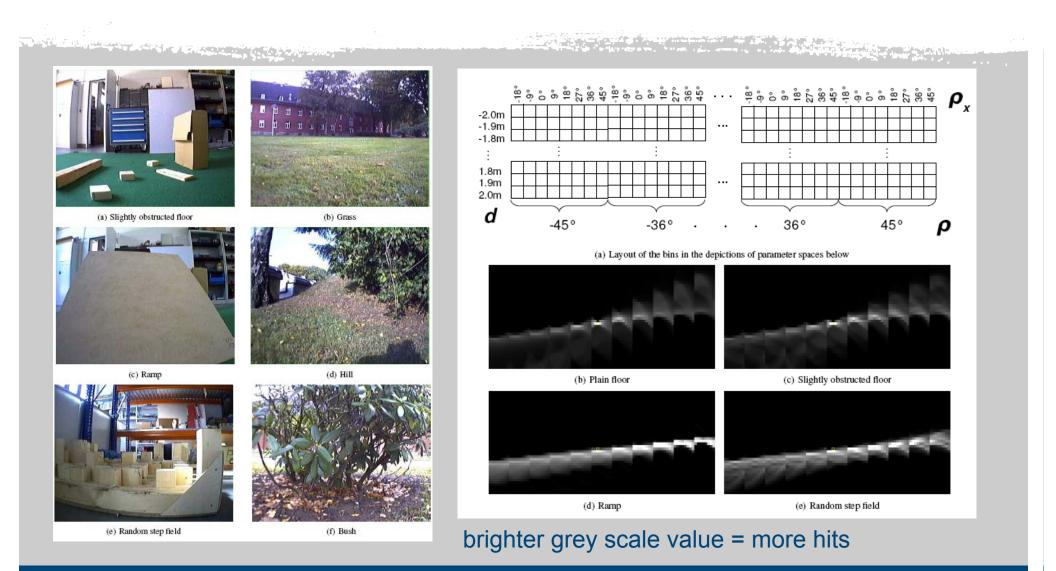
for all angles \rho_x do

for all angles \rho_y do

\mathbf{n} \leftarrow (-\sin(\rho_x)\cos(\rho_y), -\cos(\rho_x)\sin(\rho_y), \cos(\rho_x)\cos(\rho_y))^T

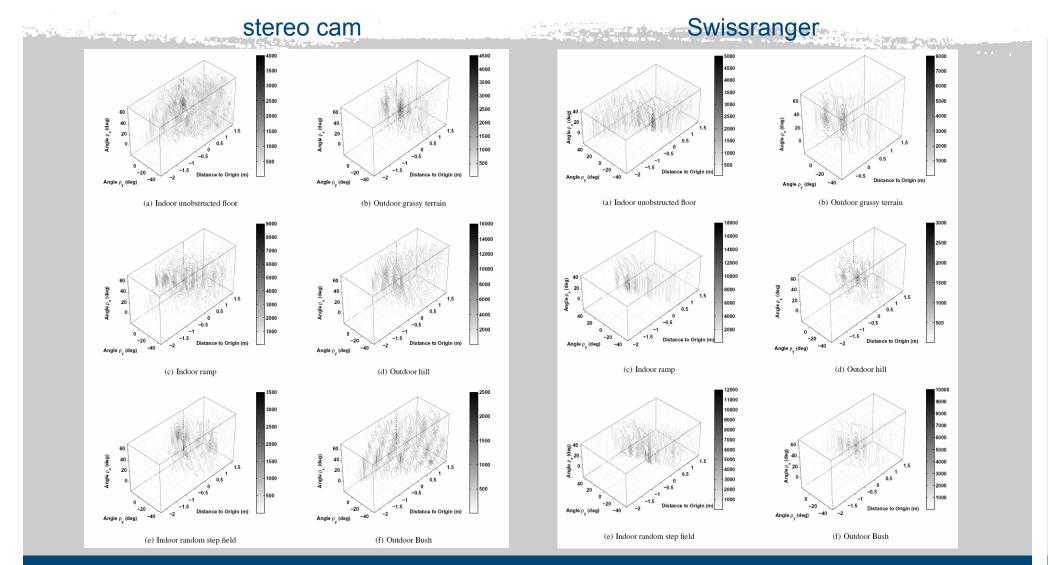
d \leftarrow \mathbf{n}p

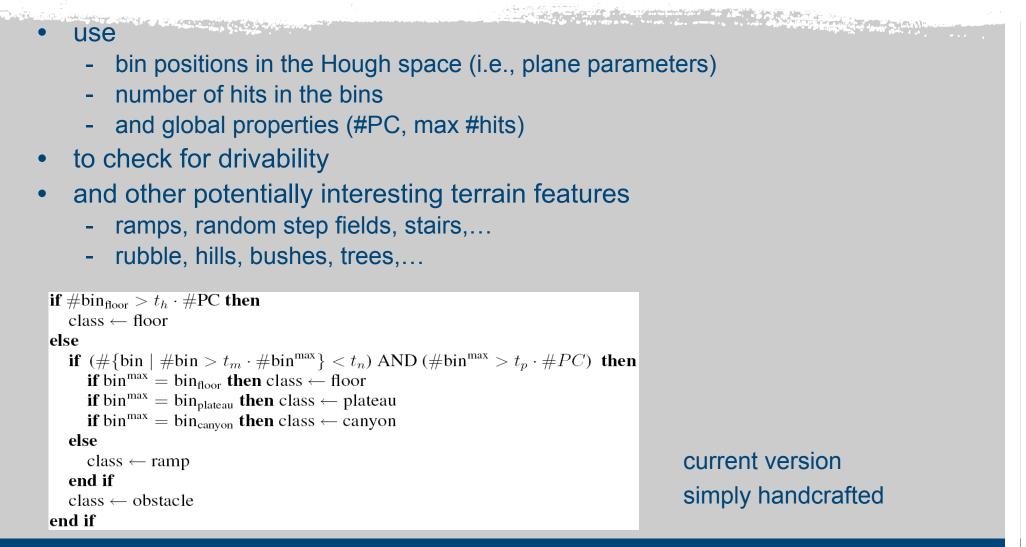
PS[\rho_x][\rho_y][d] + +


end for

end for

end for
```


Example Hough Spaces


More Examples

Jacobs University, previously International University Bremen (IUB)

Classification by Decision Tree

Experiments

more than 6800 snapshots

AND A STREET AND A STREET AND A STREET

- indoor (850) & outdoor (5950)
- data hand labeled (based on normal camera images)

dataset	description	point-clouds (PC)	aver. points per PC
stereo			
set ₁	inside, rescue arena	408	5058
set ₂	outside, university campus	318	71744
set ₃	outside, university campus	414	39762
TOF			
set ₄	inside, rescue arena	449	23515
set ₅	outside, university campus	470	16725
set ₆	outside, university campus	203	25171
set ₇	outside, university campus	5461	24790

(a) Slightly obstructed floor

(c) Ramp

(e) Random step field

(f) Bush

Sensor Drawbacks

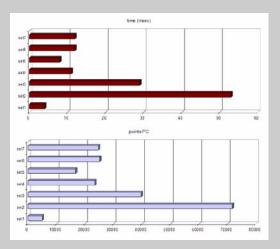
- both sensors have flaws
 - stereo fails in featureless environments
 - Swissranger is sensitive to lighting conditions
- both indicate false range pixels

=>preprocessing of sensor data (included in the runtimes)

- if #PC is too small
- then the data is discarded

dataset	snapshots	excluded data ratio
stereo		
set ₁	408	0.92
set ₂	318	0.75
set ₃	414	0.70
TOF		
set ₄	449	0.01
set ₅	470	0.02
set ₆	203	0.02
set ₇	5461	0.00

(a) The webcam image of the scene.


(b) An image of the point cloud delivered by the stereo camera. The ground does not show any features, so it does not have depth information.

Results: Fast and Robust

- processing time: 5 to 50 msec
 - mainly depends on #PC
- success rates for drivability
 - Swissranger: 83% to 100%
 - stereo cam: 98% to 100%
- notes
 - Swissranger failures mainly due to bad sensor data (outdoor light conditions)
 - more fine grain classification than drivability possible but less robust

dataset	success rate	false negative	false positive	time (msec)
stereo				
set ₁	1.00	0.00	0.00	4
set ₂	0.99	0.00	0.01	53
set ₃	0.98	0.02	0.01	29
TOF				
set ₄	0.83	0.17	0.00	11
set ₅	1.00	0.00	0.00	8
set ₆	1.00	0.00	0.00	12
set ₇	0.83	0.03	0.14	12

Virtual Test Environments

Unified System for Automation and Robotics Simulation (USARsim)

- based on Unreal Tournament game engine
- validated robot models using NIST test methods
- for prototyping, training, validation

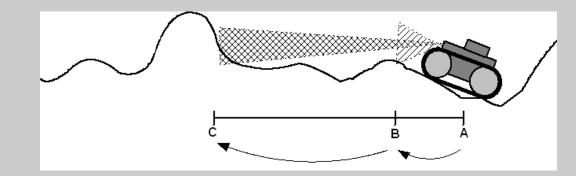
Planetary Exploration Experiments

- planetary environments in USARsim
 - artificial landscapes
 - real world MER data
- low resolution 3D range sensor
 - plus Gaussian noise
- results with Hough Classification
 - 89% correct drivability
 - 11% false negative (conservative settings)
 - 7.1 msec computation time
 - without adaptation

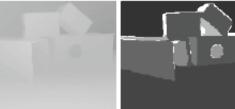
SR-3000 range data

3D surface models

Limitations & Further Work


Hough Terrain Classification

and the second second


- uses number of & type of planes
- in the near field of the robot
- this has obvious limits
- e.g., thin pole on horizontal ground

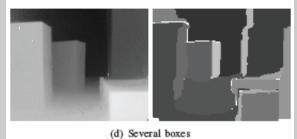
better alternative (also for long range)

consider planes & their boundaries (polyline)



Jacobs University, previously International University Bremen (IUB)

(a) Heaped boxes



extraction in ~200 msec

Conclusion

Intelligent Mobile Robots in Unstructured Environments

- SSRR is a growing research and application domain
- lessons learned in this field may be of interest for planetary exploration research

Jacobs robot

- good physical locomotion capabilities
 - flipper mechatronics
- detection of negotiable ground
 - planar Hough transform & decision tree

more information: http://robotics.jacobs-university.de/

Movies

The IUB Rescue Robot Team RoboCup German Open 2007 at Hannover Fair

The IUB Rescue Robot Team RoboCup German Open 2007 at Hannover Fair

Jacobs University, previously International University Bremen (IUB)