Robotic Components for Space ROKVISS and DEXHAND

Robotics and Mechatronics Center (RMC),

German Aerospace Center (DLR), Wessling - Germany

Maxime Chalon, Armin Wedler, Andreas Baumann, Wieland Bertleff, Alexander Beyer, Robert Burger Joerg Butterfass, Markus Grebenstein, Robin Gruber, Franz Hacker, Erich Kraemer, Klaus Landzettel, Maximilian Maier, Hans-Juergen Sedlmayr, Nikolaus Seitz, Fabian Wappler, Bertram Willberg, Thomas Wimboeck, Frederic Didot, Gerd Hirzinger

ICRA2011. May 13 2011, Shanghai China

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

1

Content

- Space Robotics
 - Objectives
 - Challenges
 - Strategy
- ROKVISS Robotic Component Verification
 - Concept
 - Experiment
 - Results
- DEXHAND
 - Mechanics
 - Electronics
 - Software and Control

2

The me

Content

- Space Robotics
 - Objectives
 - Challenges
 - Strategy

• ROKVISS Robotic Component Verification

- Concept
- Experiment
- Results

• DEXHAND

- Mechanics
- Electronics
- Software and Control

CRASHESTA -

CARDEN CONTRACTOR

Objectives

- e.g. ISS Environement \rightarrow To suport EVA activities
- Use of tools designed for humans

•Humanoid robots facilitate the handling within a telerobotic scenario

Challenges

Environment

- Vacuum (Cooling + Materials)
- Temperature difference (one side hot other side cold).
- Radiation

Communication

• High round trip time (RTT)

Launchloads

• Shock and vibration

Political Aspect

Qualification

Strategy

Strategy

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

7

Content

- Space Robotics
- •Objectives
 - Challenges
 - Strategy
- ROKVISS Robotic Component Verification
 - Concept
 - Experiment
 - Results

• DEXHAND

- Mechanics
- Electronics
- Software and Control

Carron -

ROKVISS Concept

- The verification of torque-controlled robotic joints in free space, under realistic mission conditions
- \checkmark The joints are identical to those used in DLR LWR.
- → Joint parameter identification
- → Contact dynamics experiments
- The verification of force-reflecting telemanipulation to verify the applicability of telepresence methods for future maintenance and servicing tasks.

ROKVISS Robot

AND ALLER CAR IN CARACTER

ROKVISS Experiment

- → Each joint element is equipped with the following sensors:
 - ➤ Motor position
 - → Gear output position
 - ➤ Motor input current
 - → Output torque
 - → 5 temperature sensors
- → The following control modes are implemented on joint level:
 - → Position (3kHz)
 - → Torque (3kHz)
 - → Impedance (3kHz)
- → Cartesian control (via main computer, 1 kHz)

ROKVISS Design modifications

No problem in principle:

Radiation, EMC and thermal test

- Exchange cross roller bearing against two angular roller bearings
- Exchange all electrolytic capacitors against tantalum types
- A potentiometer based link position measurement
- A latch-up protected power supply circuit was developed and implemented
- Electronic parts with extended temperature range (-45 C to +85 C) are used (COTS).
- Built with radiation tolerant parts, temperature range: -55 C to + 125 C
- A dedicated software task checks the memory in order to detect and repair bit-flips

ROKVISS Specifications

- → Mass: 2480 g
- ➤ Size: D = 142 mm, L = 108.5 mm
- → Gear ratio 160/1 (Harmonic-Drive)
- → Output torque: 120 Nm (nominal)
- ✓ Max speed: 15 rpm
- Max. allowed torque during ROKVISS operation: 40 Nm

ROKVISS on ISS since January 2005

- Launch: with Progress M-51 at Dec. 24. 2004 from Baikonur-Cosmodrome
- Installation: End of January 2005 during spacewalk
- Location:Zvezda-Module

ROKVISS Communication System

- In order to keep the round-trip communication time as low as possible, ROKVISS has an own S-band communication system, including an own antenna (Communication Unit for Payloads CUP).
- → Uplink data rate: 256 kbit/s
- downlink data rate: 4 Mbit/s, including 3.5 Mbit/s video-data.
- → Uplink frequency: 2058.0 MHz
- → Downlink frequency: 2234.9 MHz
- ➔ Modulation BPSK
- → Round trip time: < 20 ms
 </p>

ROKVISS Force Feedback

Content

- Space Robotics
- •Objectives
 - Challenges
 - Strategy
- ROKVISS Robotic Component Verification
 - Concept
 - Flight
 - Results
- DEXHAND
 - Mechanics
 - Electronics
 - Software and Control

RAMANAL

DEXHAND Requirements / Tasks and Tools

Requirement: OPS-1
 The DEXHAND shall be able to grasp the following EVA tools: Pliers, and support their operations Scissors, and support their operations Small cutter and support its operations Brush, and support its operations Hammer, and support its operations Scoop, and support its operations Cutter, and support its operations Tether(s), and support its operations Allen wrench, and support its operations Pistol grip tool (automatic screw driver) and support its trigger switch actuation
Comment: Successful operation of the tools implies force closure of the grasp. Note that preferably form closure should be achieved.

mon Allan

DEXHAND Concept

- Operational modes: telemanipulation / autonomous
- Computation inside the hand
- CAN-bus
- Power supply

- ISS (outside) environment
- EVA glove size
- Real-time impedance control for 12 joints

DEXHAND Overview

- Less than 3.3 kg
- Finger length 93 mm (Thumb 100 mm),
- DEXHAND length 340 mm (A4 page length)
- 25 N Fingertip force (Thumb 40 N) streched out

DEXHAND Finger Kinematic

- Tendon driven (Dyneema)
- 4 Joint Fingers with 3 DOF and a coupled PIP-DIP Joint
- Range of motion:
- $DOF-1 = \pm 30^{\circ}$
- $DOF-2 = 90^{\circ}$
- $DOF-3 = 90^{\circ}$

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DEXHAND Actuator Modules

- ILM25 Robodrive Motor
- Harmonic Drive HFUC8 special version
- 2,4 Nm nominal, 4,8 Nm peak,9 Nm collision Torque
- 46 g mass of the whole unit
- 8000rpm (HD limited)
- dia. 27mm x 17,5mm length (motor and gear housing, without the pulley)

DEXHAND Finger Sensor Concept

- Drive side full bridge strain gauges
- 5 kOhms for good signal noise ratio
- Except of reference hall sensors, temperature sensors and strain gauges no electronics outside the conductive shell of 2mm

DEXHAND Finger Sensor Concept

- Drive side full bridge strain gauges
- 5 kOhms for good signal noise ratio
- Except of reference hall sensors, temperature sensors and strain gauges no electronics outside the conductive shell of 2mm

DEXHAND Latest State

Chalon Maxime – Space Robotics Workshop – ICRA 2011 Shanghai 25

DEXHAND Electronic Design

- radiation tolerance
- sufficient heat dissipation
- size/performance
- power limitation
- 12 active joints requires both: high-performance and small electronic components
- Motor controller components:

have been successfully tested in a rad-test-facility under a 120 Gy irradiation

• DSP, FPGA and all other components are in rad-hard or tolerant, size, power and function compatible available

DEXHAND Shielding and EMC Compatibility

- Internal cables and connectors are shielded
- Special connectors have been designed with power and signal lines (connect the actuator modules with the electronics)
- EMC Test performed with 4 kV spikes

DEXHAND Electronic compact housing

DEXHAND Power and heat dissipation

in der Helmholtz-Gemeinschaft

DLR

DEXHAND Control architecture

Control architecture is fully included in the hand :

- 28V Power Supply
- CAN Bus

30

DEXHAND Deployment Architecture

- GUI with predefined sets of grasps and configurations
- 3D viewer
- Dataglove : teleoperation
- Real-time interconnection:
- Dexarm
- Two handed manipulation
- -...
- HIROSCO: Real-time
 Framework for Space Robots

in der Helmholtz-Gemeinschaft

Conclusion

- DEXHAND profits from Space robotics knowledge from ROKVISS (Space Robotics Workshop Friday morning)
- The experience of DLR in hand design help in design and manufacture DEXHAND
- Real-time impedance control of 12 joints
- Stronger than a human
- The performances : size, weight, speed are impressive for space technologies
- Design to be integrated in larger scenarios

Future steps:

- Verification tests
- Deliver the Hand to ESA
- Fly !

Thank you for your attention!!!

- The DEXHAND Team has been over two years min. about 15 person
 - The project has been financed by the ESA Contract No. 21929/08/NL/EM

Question and Videos

in der Helmholtz-Gemeinschaft

34 Chalon Maxime - Space Robotics Workshop - ICRA 2011 Shanghai

Control architecture

in der Helmholtz-Gemeinschaft

Latch-up Protection Circuit

in der Helmholtz-Gemeinschaft

ROKVISS External Unit (REU) and On Board Computer (OBC)

Chalon Maxime – Space Robotics Workshop – ICRA 2011 Shanghai 37

ROKVISS - friction identifikation joint 2

38

DSP functions

- DSP @ 225 Mhz •
- Functions: • Communication Impedance control Power management Safety functions
- Simulink generated ۲ control code

FPGA functions

- Send Receive Collects sensor signals: Status • Motor **CAN** Core Strain gauges (SPI) PWM, Direction Controller **Reference** position Brake **Quadrature Encoders Overspeed** Monitoring DMS Motor **PWM** generation Quadrature Motor Hall Amplifiers **FPGA** SPI Sensors Decoder ADC Current Hardware CAN Layer ٠ Sense Reference Joint Hall Position Sensors **Dual Ported RAM** Detection Safty functions (Low DSP level) Read / Write
- **DSP** interface •

Palm Structure

- •The Palm consists of 13 parts
- •These parts are assembled together to 4 finger units Ring finger
- •Each finger unit consist of 3 ILM 25 actuator units with HD HFUC8 gearings
- •Each finger unit contains guidings and pulleys for the tendon routing

ROKVISS System Overview

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V.

Modifications

- All heat emitting electronic parts need to be thermally coupled to the robot's structure to allow for heat dissipation
- Thermo switches and heater foils keep the joint within its operational temperature range

ROKVISS Remote Control with Laptop via DSL

Be DLR-Ground-Control -		Examiner Viewer
File Edit View Options Help DLR Ground Control via Internet Start Server TLM connected with 127.0.0.1:55000 CMD connected with 127.0.0.1:50000 CMD-Tx Socket created TLM-Rx Socket created UDP Socket connected	Clear Net-Window	
Scene-Camera start joint abs 6.830000 85.710000 20.000000 start joint abs 0.000000 -90.000000 20.000000	Clear CMD-Window Block count	
Null-Pos Look to earth Above callib Go Home Telemanipulation 0 17.002658 102.002387 0.956291 -0. 0 17.002658 102.002387 0.956291 -0. Stop Telem. 0 17.002658 102.002387 0.956291 -0. 0 17.002658 102.002387 0.956291 -0.	Home from Track Clear TLM-Window Block count 3 CT [ms] / Rate [bit/s] 002484 / 000000	
	Start Los Stop Los	
For Help, press F1		RotX RotY Dolly
🚚 Start 🕐 🖻 🛱 🏉 🖤 💽 🎱 💭 💭 W. 💽 M 🔘 P	🖉 V.i 🛛 🕲 T.i 🖉 a.i	📲 D 📲 U 🔤 a 🔄 E DE 🔤 🖉 🖓 😓 🎔 🏷 💭 🖉 🗿 🗐 🐨 📆 🐼 15:08

Round-trip-time ~80 ms

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft CURDEN / //KI

Chalon Maxime – Space Robotics Workshop – ICRA 2011 Shanghai 45

In November 2010 the ROKVISS flight hardware was dismounted. The two joints will be delivered to DLR-RM for a detailed analysis in June 2011.

Fingertip design

	Square	Hemi- spherical	Variable curvature	Variable curvature flat end
Finger tip shape	a.	b.	C.	d.
Small object picking	+++	-	++	++
Rolling		+++	++	++
Maximum load on the finger tip during pinch grasp	++	-	+	+++

DEXHAND Power and heat dissipation

Case	Full- Power	Standby	Nominal		
Input filter	5 W	2 W	3,5		-
Backplane PCB	6 W	6 W	6 W	0.00 50.00 100.00 (mm)	
Sensor PCB	2 W	2 W	2 W	25.00 75.00	
Power inverters	24 W	3,6 W	14 W	Temperatures in C ^o	
Controller PCB	5 W	5 W	5 W	→ Static after 30 min	
Motors	58 W	0 W	28 W	→ Maximum at the	
Total	100 W	18,6 W	58,5 W	digital electronics	
Full F	Power	Stand	by	Nominal Input Filter Backplane Sensor PC Power inve Controller F Motors	PCB B rters PCB

Martin = 1

91,788 Max 87,521

83,254 78,987

74,721 70,454

66,187 61,92

57,653 53,386 Min