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Dynamically Complex Vehicles

✤ Increased deployment of complex autonomous systems
✤ Unpiloted Aerial Vehicles

✤ Autonomous Underwater Vehicles

✤ Spacecraft

✤ Robotic Manipulators (possibly mounted to one of the above)

✤ Dynamic are much much more complicated than standard laboratory 
(wheeled) mobile vehicles

Monday, June 20, 2011



Software Architecture

Tiered software architectures are useful for automating these systems:

✤ “High–level” intelligent agents produce trajectories/goals
✤ “Low–level” control algorithms execute trajectories

✤ Controller simplifies the input/output behavior of the dynamical system as seen by 
the intelligent agent

✤ Potentially makes agent’s job easier — reduces scope of behaviors to be accounted for
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Hybrid Systems Can Have 
Nontrivial Dynamics
✤ Control systems are often treated as a black box
✤ But the dynamics behavior of a coupled control algorithm/vehicle can 

be nontrivial

✤ Nonzero settling time

✤ Overshoot

✤ Steady–state offsets

✤ Imperfect tracking of
complex trajectories

✤ Claim: As a result, undesirable behavior can occur when the controller 
and agent are linked in a feedback loop even though each module 
functions correctly in isolation

Typical step response, 2nd order linear system
Phillips and Harbor, Feedback Control Systems, p. 125
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Insert stories here.
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Analysis of a Hybrid System 

✤ Research aim: develop an autonomous proximity operations spacecraft
✤ Testbed: MPOD, a neutral buoyancy spacecraft simulator
✤ Facility: University of Maryland’s Neutral Buoyancy Research Facility

Recently named one of US’ “five most awesome college labs” by Popular Science
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MPOD Control Algorithms

Standard “PD” linear attitude control algorithm:

τPD = −Kdω̃ −Kp�̃

≡ −Kdσ

σ
�
= ω̃ + λ�̃ ≡ ω̃ +

Kp

Kd
�̃

with

�̃
ω̃
Kp,Kd

configuration error (here, attitude error)
velocity tracking error (here, angular velocity error)
proportional and derivative gains

Three gainsets of low, medium, and high stiffness
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MPOD Control Algorithm Performance

✤ Gainsets tuned to provide 
progressively faster responses

✤ Progressively lower tracking 
error

✤ Similar overshoot (≈7%)
✤ Good performance, as measured 

by classic linear controller 
performance metrics
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Piloted Docking Task

✤ Pilots instructed to fly MPOD 
from start position to hard dock 
with a rigid target

✤ Desired trajectories generated by 
human pilots

✤ Two 3–DOF joysticks, 
“smoothed” by 1st order low 
pass filter

✤ Each pilot flewMPOD to hard 
dock six times using each 
controller
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Pilot Performance

✤ Pilot performance strongly dependent on gainset
✤ “Stiff” PD controller exhibited worst pilot performance; pilot physical 

and mental workload far higher
✤ Strange oscillatory episodes observed with stiff PD controller

“Total Pilot Effort”
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Pilot–Induced Oscillation
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Predicting Undesirable Interactions

✤ Similar problem seen in aircraft industry: pilot–induced oscillations (PIO)

✤ Result of the interaction between the pilot (a non–mathematical system!) and a 
vehicle/control system

✤ Rapid oscillatory motion, often with catastrophic results
✤ Often seen with

✤ Experienced pilots (including test pilots and astronauts)

✤ Variety of aircraft: F––15, YF––22, MD–11, C–17, Space Shuttle, etc

✤ Often when performing high precision operations such as landing

✤ Tools for analyzing system dynamical behavior are mathematical
✤ Most intelligent agents (including humans) are inherently non–mathematical

How do you mathematically analyze a non–mathematical system?

Monday, June 20, 2011



Mathematical Analysis of MPOD PIO

✤ Analysis of PIO requires mathematical models of vehicle, controller, 
and pilot

✤ Most widely accepted pilot model: the “crossover model”*
✤ Represents actions of pilot performance setpoint maintenance task (e.g. maintaining 

a heading)

✤ Pilot acts as a linear PD controller with time delay
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* McRuer, et al, “A Review of Quasi-Linear Pilot Models”, IEEE Transactions on Human Factors in Electronics , Sept. 1967.
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PD Controllers Can Lead To PIO

✤ Root locus plot indicates instability for stiff PD system with large pilot gains

✤ Apparent C.L. pole locations (represented by *'s) indicate highly oscillatory system
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Preventing Undesirable Interactions

What can be done to prevent undesirable interactions?

Idea —
Linear control algorithms are simple:

But their closed–loop dynamic are complex:

Is there any way to simplify the closed–loop behavior?

τPD = −Kdσ

GCL (s) =
K

s (s+ 2)
×

ω2
n

�
2
λs+ 1

�

s2 + 2ζωns+ ω2
n
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Control Algorithms With Better 
Performance

Some nonlinear control algorithms exhibit better performance:

τNL = −Kdσ +H (�) ω̇r + C (�,ω)ωr + E (�,ω)

ωr = ω − σ

H —
C —
E —

where

Inertia matrix
Coriolis and centripetal forces
environmental forces (drag, gravity, etc.)

(theoretically) guarantees asymptotically perfect tracking of arbitrarily 
complex desired trajectories (assuming continuous second derivatives).
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Nonlinear Controller Seems to 
Eliminate PIO

✤ Asymptotically perfect tracking (theoretically) implies that controller 
causes closed--loop dynamics to become trivial

✤ Root--locus plot always stable
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N.L. Control → Better Pilot Performance

✤ Nonlinear controllers reduce tracking error moderately...
✤ But they improve pilot performance a lot.

Monday, June 20, 2011



What’s The Difference?

Linear control algorithms are simple:

But they lead to complex closed–loop dynamics:

τPD = −Kdσ

GCL (s) =
K

s (s+ 2)
×

ω2
n

�
2
λs+ 1

�

s2 + 2ζωns+ ω2
n

Nonlinear control algorithms are more complex:

τNL = −Kdσ +H (�) ω̇r + C (�,ω)ωr + E (�,ω)

But they exhibit much simpler closed–loop dynamics:

GCL (s) =
K

s (s+ 2)
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Conclusions

✤ Humans are the “gold standard” of intelligent agents, but unexpected 
behaviors can emerge even in piloted systems

✤ Similar behaviors can certainly emerge from more autonomous tiered 
systems

✤ Initial claim is verified:
validating hardware/software components in isolation is not 
sufficient to guarantee desired performance
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Lessons Learned

✤ Tools for analyzing complex software systems are not well developed
✤ But...
✤ Taking PIO analysis as inspiration, mathematically approximating 

non–mathematical systems can be effective and give important 
insights into system behavior

✤ System behavior is greatly simplified when individual component
input/output behavior is as simple as possible
✤ Simple components often do not lead to simple behaviors or simple interactions

✤ Differential equations are your friends
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