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When available, absolute position systems such as GPS

or orbital imaging can provide near-ideal estimates of the

position and attitude estimates necessary for long-term au-

tonomous robotic operation. Unfortunately, such systems are

unavailable for a number of interesting mission locations,

including explorations of Venus, Titan, or small bodies.

In the absence of absolute position sensors, existing robot

localization systems tend to either rely solely on local sensors

of ego-motion (such as IMUs and wheel encoders) as in the

current GESTALT system for the Mars Exploration Rovers

(MER) discussed in [1], or incorporate measurements of

the rover’s relative position and orientation with respect

to certain landmarks in the environment using vision or

ranging sensors. This may consist of triangulation from

known reference positions as in [2], or the construction

of adaptive feature maps as in the Simultaneous Localiza-

tion and Mapping (SLAM) framework [3]. These methods

have definite strengths, including the ability to provide both

global position and orientation estimates as well as accurate

estimates of the uncertainty in the parameters. They can

also provide global localization of environmental features

and thus allow the accumulation of information for the

assembly of stable maps necessary for long-distance plan-

ning. However, these approaches often face a number of

limitations, including computational expense, a reliance on

point estimates of landmarks, and the need for high quality

sensing to determine the exact distance to visible landmarks.
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Fig. 1. Example of objects and groups of objects comprising a crater
region on Mars, including distinctive rocks (Blue), groups of rocks (Red),
exposed crater wall(Green), and the crater basin (Yellow). The orange
outline highlights an area of exposed outcrop.
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Fig. 2. Schematic of the Extended Double Cross (EDC) for 2 landmarks
A and B. The qualitative location of a third point C can be described using
the dichotomies which split up the space around the vector AB.

This work focuses on mapping unstructured spaces with

sparse landmarks, such as the crater region shown in figure

1, using an extension to the qualitative geometry discussed

previously in [4]. The aim is to decouple the robot position

estimation problem from that of map building as much as

possible. This is inspired by the insight that many robot

tasks, such as navigation, do not require a fully defined

metrical map. Use of qualitative relations between objects

allows maps to remain useful in the presence of many types

of distortion common in traditional metrical mapping ap-

proaches. For example, global position uncertainty can grow

rapidly due to odometry errors resulting from wheel slippage.

Unlike the graphical models used in many algorithms from

the SLAM community, this framework considers the rela-

tionships between observed features, rather than considering

them primarily in relationship to the robot [5].

In this approach, landmark positions are specified in terms

of qualitative relationships with other landmarks, rather than



by metrical positions. The underlying representation used is

the Extended Double cross, shown in figure 2. The position

of a point C can be specified in terms of the six boundaries

around the line between points A and B, resulting in 20

discrete regions for each landmark pair. Constraints on which

region a given landmark lies in can be extracted from single

camera images by solving a series of nonlinear feasibility

problems. As the rover moves, these constraints are stored

in a graph called the ‘Qualitative Relational Map’ (QRM),

with an edge between each observed landmark triple. Given

a traversal of sufficient coverage, the graph is guaranteed

to converge on the single true relationship between each

landmark triple. The test case used to evaluate system

performance is the exploration and mapping of a Mars-

like environment, evaluated using as ground truth the 3D

reconstruction of the JPL Mars Yard shown in figure 3.

The QRM algorithms bears some resemblance to topolog-

ical approaches, however the underlying representations of

map elements are fundamentally different. While topological

and topometric algorithms, such as those presented in [6]

and [7], have achieved great success in mapping indoor and

highly structured urban environments, they often perform

poorly in open environments with sparse features. In such

areas, the regions represented as nodes in a topological graph

become poorly defined, as do the edges representing transi-

tions between such regions. In contrast, the graph structure

used in this work represents geometrical constraints on the

relative positions of landmarks in an open environment.

The underlying motivation is to explore how much in-

formation about objects of interest can be extracted from a

minimal set of low-cost sensors. The qualitative mapping

approach relies on a single camera with minimal quality

requirements. Like all monocular mapping strategies, the

map is unable to specify a global scale. While most recent

work on monocular navigation, in particular mono-SLAM

algorithms such as those discussed in [8], attempts to infer a

scale from estimates of ego-motion, this can be impractical

in high-slip environments or with low-cost platforms. In

contrast, the qualitative geometries used in this work operate

in a naturally scale-free environment and do not require any

information as to the location of imaging locations.

Preliminary work on using the qualitative map for navi-

gation purposes shows that it is possible to navigate close to

an arbitrary point in the interior of the map without relying

on a metrical localization. One possible strategy relies on

the ability to extract the landmark relative neighbor graph

(RNG) from the qualitative map. The RNG is a sub-graph

of the Delaunay triangulation which links points A and

B if there is no third point lying within the lune formed

by circles of radius |AB| centered at A and B [9]. The

RNG and associated Voronoi regions for landmarks found in

the JPL Mars Yard are shown in figure 4. Long distance

navigation to a goal Voronoi region can be achieved by

successively homing on landmarks found by a graph search

on the RNG, at which point a local strategy can be employed

to achieve a desired set of qualitative relationships with

nearby landmarks.

Fig. 3. 3D reconstruction of the JPL Mars Yard. The pointcloud was
generated from stereo panoramas taken at the imaging points denoted by
red circles. Landmarks include medium sized rocks such as those in the
image center as well as similarly sized objects such as the generators in the
upper left and right corners.

Fig. 4. Relative Neighbor Graph (RNG) in red and Voronoi regions in
green for landmarks found in the JPL Mars Yard.
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