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Abstract— This paper describes derivation of an 

equivalent circuit for nonlinear responses in film bulk 

acoustic resonators from the first-order perturbation 

analysis using the piezoelectric constitutive equations with 

the h-form. For simplicity, electrodes and piezoelectric 

layer are regarded as a mass and spring in the derivation. 

Then it is demonstrated that the H2 response can be 

simulated well by the circuit.  

I. INTRODUCTION 

Advance in mobile communications requests further 

suppression of nonlinear signal generation in radio frequency 

(RF) surface and bulk acoustic wave (SAW/BAW) 

resonators[1-4]. For the purpose, accurate and fast simulation 

tools are demanded. 

Shim and Feld proposed an nonlinear equivalent circuit for the 

purpose[2]. In the analysis, multiple nonlinearities are included 

simultaneously, and the nonlinear response is analyzed by the 

harmonic balance method[5]. 

Since nonlinearity in RF SAW/BAW devices is weak, the 

first-order perturbation analysis should be enough. The authors 

indicated that non-linear behaviors of RF BAW resonators are 

simulated well in high speed by the first-order perturbation 

analysis in combination of the piezoelectric constitutive 

equations with the h form instead of those with the e form[6]. 

The authors also applied the perturbation analysis to the two 

dimensional (2D) case, and demonstrated that H2 behavior 

including transverse modes can be explained well by a first-

order 2D perturbation analysis[7]. However, these analyses 

were based on the wave equations, it is not convenient to 

understand nonlinear behaviors intuitively although the 

simulation is very fast. 

This paper describes derivation of a 1D nonlinear equivalent 

circuit from the perturbation analysis based on the constitutive 

equations with the h form.  

To simply the derivation, the following approximations are 

applied. 

1. Electrodes are very heavy and stiff, and their deformation 

is negligible. 

2. The piezo layer is very light, and its inertia (mass) is 

negligible. 

Namely, electrodes and piezo layer are regarded as simple 
two masses and a spring, respectively. The mass-spring model 
stands for current FBAR structures employing heavy and stiff 
electrodes for enhancing the effective electromechanical 
coupling factor[8]. 

 

II. MODELLING OF THICKNESS RESONATOR  

A. Linear Analysis  

Let us apply 1D analysis to a thickness resonator shown in Fig. 

1, which is composed of a piezoelectric layer with the thickness 

L sandwiched in between two electrodes with the thickness l. 

Here we assume the electrode width W is much larger than L 

and l, and the electrode area A is given by W2. 

 

Fig. 1 Thickness resonator configuration used in this analysis 

Fields in the piezoelectric body are assumed to be governed 

by the following linear constitutive equations with the h form: 

DT c S hD  ,     (1) 

and 

SE D hS  ,      (2) 

where T, S, D, and E are stress, strain, electric flux density, and 

electric field, respectively, cD is the stiffness under constant D, 

S is the inverse permittivity under constant S, and h is the 

piezoelectric constant. 

 The electric current I flowing to the top electrode is given by 

jI
D

A
 ,      (3) 

and the conservation law of the flux density is given by 
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Eq. (4) indicates that D is independent of x, namely uniform. 

The mass-spring model indicates that S is also independent of 

x. Thus that the voltage V between two electrodes is given by 

_ /2
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/2

L

L

V Edx L D hS




       .      (5) 

from Eq. (2). On the other hand, one may obtain the following 

equation of motion from Eq. (1): 

2 D 0lu c S hD    ,       (6) 

where  is the mass density of the electrodes, and u is the 

displacement of the top electrode. When we set u=0 at the 

center of the piezo-layer, u is given by SL/2. Then Eq. (6) gives 

D

D 2 2

a

/

/ 2 1 ( / )
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, (7) 

where a is the anti-resonance frequency given by (2cD/lL)0.5. 

Substitution of Eq. (7) to Eq. (5) gives 

2

0 t
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 
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where C0 is the clamped capacitance given byS-1A/L, and kt
2 

is the electromechanical coupling factor for the thickness 

vibration given by h2/cDS. Eq. (8) indicates that the resonance 

frequency r is given by a(1-kt
2)0.5. 

Eq. (8) gives an equivalent circuit shown in Fig. 2 for linear 

vibration[9], where Cm=C0/(kt
-2-1) and Lm=1/a

2C0kt
2 are 

motional capacitance and inductance, respectively, and 

relations of r=(LmCm)-0.5 and a={Lm(C0
-1+Cm

-1) -1}-0.5 hold. 

 

Fig. 2 Linear equivalent circuit 

Modification of Eq. (8) gives a mechanical current Im defined 

in Fig. 2 as 
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and its comparison with Eq. (7) gives 

S

m mD 2

t

jh j
S I I

Ac k hA



 
  .      (10) 

When various loss mechanisms are introduced, one may 

obtain the modified BVD model[10] given in Fig. 3. 

 

Fig. 3 Linear equivalent circuit including loss terms (Modified 

BVD model[10]) 

B. Nonlinear analysis 

Let us introduce non-linear terms to the constitutive 

equations given in Eqs. (1) and (2), namely 

D

NT c S hD T          (11) 

and 

S

NE D hS E   ,    (12) 

where TN and EN are the stress and electric field generated by 

nonlinearity. Substitution of Eqs. (11) and (12) to Eqs. (5) and 

(7) gives 

S

N N N NV L D hS LE     
      (13) 

and 
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Here the subscript N added to , V and I indicates that they are 

caused by nonlinearity. One may obtain the following relation 

after substitution of Eq. (14) to Eq. (13) and mathematical 

manipulation: 
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Since DN=jIN/NA, one may obtain 
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Eq. (16) gives the equivalent circuit model given in Fig. 4, 

where VNE=-LEN and VNT=-SLTN/h are voltage sources with 

the frequency ofN. 

 

Fig. 4 Equivalent circuit including signal sources caused by 

nonlinearity 

Introduction of loss mechanisms gives the equivalent circuit 

shown in Fig. 5. 

 

Fig. 5 Equivalent circuit including loss terms and signal 

sources caused by nonlinearity 

Nonlinear responses are analyzed by the following steps. 

First, peripheral circuits are added to the Modified BVD 

model given in Fig. 3, and I and Im are calculated. Eqs. (3) and 
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(9) are used to estimate D and S from these values. Note that 

this analysis should be performed at two driving frequencies for 

evaluation of the inter-modulation distortion (IMD). 

Next, TN and EN are estimated. Expansion of the Gibbs free 

energy until the third-order [11] gives nonlinear terms in the 

constitutive equations (11) and (12) to the following forms: 

T 2 T T 2

N 20 11 02

T 3 T 2 T 2 T 3

30 21 12 03

1 1

2 2

1 1 1 1
     

6 2 2 6

T S SD D
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  

   
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   

  (17) 

and 
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, (18) 

where ij
T and ij

E are coefficients. Provided they are given, we 

can calculate VNE=-LEN, and VNT=-SLTN/h after extracting 

proper frequency components from TN and EN in Eqs. (17) and 

(18) and substituting D and S determined by the linear analysis. 

Finally, the nonlinear response is calculated by applying the 

peripheral circuits to the equivalent circuit shown in Fig. 5. 

It should be noted that since equivalent circuits given in Figs. 

3 and 5 will be used in different frequencies, their parameters 

are not necessary to be identical. 

It is interesting that since D and S are spatially uniform, TN 

and EN are also uniform in addition to SN and DN. 

 

III. COMPARISON BETWEEN THEORY AND EXPERIMENTS  

A. Linear Simulation  

First, parameters in Fig. 3 are determined by fitting with the 

experimental data. Fig. 6 shows the measured input admittance 

of a FBAR with the Ru/AlN/Ru structure[12]. In the figure, the 

fitted result is also shown. It is seen that the agreement is 

excellent. 

 

Fig. 6 Measured simulated admittance responses 

B. H2 Simulation  

Next, the second-harmonic (H2) response is analyzed by using 

equivalent circuit parameters determined by the above fitting.  

Fig. 7 shows the measured result. A peaky response is seen, 

which indicates terms only including S2 are dominant. Namely, 

S (Im) exhibits a peaky dependence similar to the Bode Q[13], 

while D exhibits a notch at the anti-resonance frequency. H2 is 

almost constant at f < 2.25 GHz. This indicates that term(s) with 

D2 also contribute to the output. 

 

Fig. 7 Measured and simulated H2 responses 

 In the figure, two simulation results are shown: one 

considers 20
TS2 and 02

TD2 in TN only while another does 

11
TS2 and 02

ED2 in EN only. Both results are quite similar to 

the experimental one, and it is hard to clarify which one is 

dominant.  

Note strong spike trains are seen below the peak frequency. 

They are due to transverse mode resonances[7,14], and are not 

taken into account in the present 1D simulation. 

The authors also simulated H2 response using the wave-

equation based technique proposed in [6], and its result was 

quite similar to that shown in Fig. 7. 
 

IV. DISCUSSIONS AND CONCLUSIONS  

In this paper an equivalent circuit was derived for nonlinear 

responses in FBAR from the first-order perturbation analysis of 

the constitutive equations with h-form. In the derivation 

electrodes and piezoelectric layer are regarded as simple two 

masses and a spring, simplicity, for simplicity. Then it was 

demonstrated that the H2 response can be simulated well by the 

circuit. Although details are omitted due to page limitation, the 

authors verified that the current model is effective also for the 

H3 analysis. 

 The derived equivalent circuit indicates the followings: 
When the driving frequency is far from the resonance, only 

terms proportional to Dn contribute to the output, which is 
almost independent of frequency. In contrast, when the driving 
frequency is close to the resonance, the other terms proportional 
to Sn also contribute. Terms only including Sn exhibit a peaky 
response. The other terms with SnDm are also peaky, but a notch 
appears at the anti-resonance frequency where D~0. Note that 
larger n makes the peak steeper. 
When the driving frequency is chosen close to the resonance, 

the nonlinear response caused by TN is hardly distinguishable 
with that caused by EN. On the other hand, impacts of TN and EN 
are different when the resulting frequency is close to the 
resonance. For example, EN will cause a dip in the nonlinear 
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response when the resulting frequency is close to the anti-
resonance one. 

Note that the equivalent circuit proposed in this paper can be 

extended to cases including transverse mode resonances[15]. 
For SAW devices, notches are often observed in nonlinear 

responses when the driving frequency coincides with the 
resonance frequency instead of the anti-resonance one[3,4]. This 
means power series expansion should be given in a form of SnEm 

rather than SnDm. Namely, the constitutive equations with the e 
form seem better than those of the h form for the case. 
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