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Abstract—Coherent plane-wave compounding (CPWC) ultra-
sonography is an important imaging modality that allows for
very high frame rates. During CPWC image reconstruction,
computationally expensive delay-and-sum beamforming can be
replaced by faster Fourier-domain remapping. We show that
the cost of such spectral reconstruction can be reduced further,
by employing scaled fixed-point arithmetic amenable to efficient
beamforming hardware realization.

Index Terms—Plane-wave ultrasound imaging, Fourier-domain
image reconstruction, fixed-point computations

I. INTRODUCTION

Ultrafast plane-wave (PW) ultrasound imaging features the
data acquisition rates reaching thousands of frames per second,
which gives rise to new possibilities in echocardiography and
elastography applications [1]. Typically, the PW image recon-
struction process involves coherent compounding of multiple
beamformed frames, each corresponding to a particular tilted
PW emission (over a set of multiple angles). Such coherent
plane-wave compounding (CPWC) improves the resulting im-
age quality but reduces the overall frame rate.

There are numerous methods we can use to obtain com-
pounded PW images in two spatial dimensions (z, x), where
z and x refer to the axial and lateral coordinates, respectively.
For example, one common technique is the standard delay-
and-sum (DAS) beamformer that operates in the (t, x) domain,
where t represents the temporal axis (sampling time instances).
Alternatively, image reconstruction can be done in the spatio-
temporal frequency domain: the (f, kx)-domain dataset is
remapped into the (kz, kx)-domain dataset, where f denotes
the temporal frequencies, while kx and kz denote the spatial
frequencies (e.g., see [2]–[6]).

This paper focuses on one of the Fourier-domain remapping
methods proposed in [6], offering substantially lower compu-
tational latency compared to conventional DAS beamforming.
We demonstrate that it is possible to obtain high-quality
compounded images using hardware-oriented scaled fixed-
point arithmetic operations during spectral reconstruction, as
opposed to using more accurate but costly software-oriented
floating-point calculations.

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

II. BACKGROUND

This section briefly summarizes our Fourier-domain migra-
tion method for reconstructing coherently compounded PW
images, borrowing from our previous work [6] with a slight
change in notation to streamline the presentation.

Let θ represent a PW emission angle, and let P (t, z, x, θ)
denote the resulting acoustic wavefield. Given the wavefield
P (t, 0, x, θ) recorded over time at the surface (i.e., at depth
z = 0), we want to reconstruct the subsurface image dataset
P (0, z, x, θ) at time t = 0.1 This goal can be accomplished
using Fourier-domain interpolation as follows.

Let Ψ(f, 0, kx, θ) and Ψ̃(0, kz, kx, θ) denote the Fourier
transforms of known P (t, 0, x, θ) and unknown P (0, z, x, θ):

Ψ(f, 0, kx, θ) =

∫∫
P (t, 0, x, θ)e−j2π(kxx+ft)dxdt, (1)

P (0, z, x, θ) =

∫∫
Ψ̃(0, kz, kx, θ)e

j2π(kxx+kzz)dkxdkz. (2)

We have Ψ(f, 0, kx, θ) as an input, generated by the Fourier
transform of P (t, 0, x, θ). We need to obtain Ψ̃(0, kz, kx, θ)
from Ψ(f, 0, kx, θ), so that sought P (0, z, x, θ) can be com-
puted via the inverse Fourier transform of Ψ̃. In our previous
work [6] (extending classic Stolt’s migration method [7]), we
proposed the remapping formula shown below, producing the
intermediate spectrum

Ψ̃∗(0, kz, kx, θ) = A(kz, kx, θ) ·Ψ (fmig(kz, kx, θ), 0, kx, θ) ,
(3)

with the values of fmig and A determined by

fmig(kz, kx, θ) =
ckz

1 + cos(θ)

[
1 + (kx/kz)

2
]
, (4)

A(kz, kx, θ) =
c

1 + cos(θ)

[
1− (kx/kz)

2
]
, (5)

where c is the speed of sound. Applying the inverse Fourier
transform to Ψ̃∗(0, kz, kx, θ) will yield a preliminary image
dataset P (0, z∗, x, θ), from which we can obtain P (0, z, x, θ)
by repositioning data points at locations (z∗, x) to their new
coordinates (z = z∗ + x tan(θ)/2, x) [6].

1This approach is based on the so-called exploding reflector model, assum-
ing that the backscattered echoes are produced by reflectors “exploding” at
t = 0 (e.g., see [7]).
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To compound multiple angle-specific P (0, z, x, θn) over a
given angular set {θn | n = 1, 2, ..., Na}, we perform the
following summation [6]:

C(kz, x) =

Na∑
n=1

ejπkzx tan(θn) ·Ψ(kz, x, θn), (6)

Ψ(kz, x, θn) =

∫
Ψ̃∗(0, kz, kx, θn)ej2πkxxdkx, (7)

where Ψ(kz, x, θn) represents the 1D inverse Fourier trans-
form of Ψ̃∗(0, kz, kx, θn) along the kx-axis, and C(kz, x)
is the compounded (kz, x)-domain dataset. We get the final
image dataset, denoted by D(z, x), via the 1D inverse Fourier
transform of C(kz, x) along the kz-axis:

D(z, x) =

∫
C(kz, x)ej2πkzzdkz. (8)

Fig. 1 outlines the corresponding computational procedure.
The 3D input P[ · ] is a raw RF channel dataset recorded over
Nt time instances {tl = 0,∆t, ..., (Nt − 1)∆t}, Nx sensor
locations {xm = −Nx

2 ∆x, ..., 0, (
Nx

2 − 1)∆x}, and Na PW
emission angles {θn | n = 1, 2, ..., Na}, i.e., P[ · ] represents
P (t, 0, x, θ). The other 3D inputs M[ · ], A[ · ], and E[ · ] represent
fmig(kz, kx, θ), A(kz, kx, θ), and exp(jπkzx tan(θ)), respec-
tively. The 2D output H[ · ] is obtained via the Hilbert transform
(along the z-axis) of the final dataset D(z, x) represented by
D[ · ] (lines 12 and 13 in Fig. 1). This output is useful for
subsequent data processing (e.g., detecting the envelope), and
it is computed by the HILBERT function for each xm value.

Input: Raw dataset P[ · ], map M[ · ], scaler A[ · ], phase shift E[ · ]
Output: Hilbert-transformed compounded image dataset H[ · ]
1. C← 0;
2. for n = 1:Na do {
3. for m = 1:Nx do { F[:,m]← FFT(P[:,m, n], NFFT

t ); }
4. for l = 1:NFFT

t do { F[l, :]← FFT(F[l, :], NFFT
x ); }

5. for m = 1:NFFT
x do {

6. K[:,m]← REMAP(F[:,m], M[:,m, n]);
7. K[:,m]← A[:,m, n]× K[:,m]; }
8. for l = 1:NFFT

t do { K[l, :]← IFFT(K[l, :], NFFT
x ); }

9. for m = 1:Nx do { K[:,m]← E[:,m, n]× K[:,m]; }
10. C← C+ K; }
11. for m = 1:Nx do {
12. D[:,m]← IFFT(C[:,m], NFFT

t );
13. H[:,m]← HILBERT(D[:,m]); }

Fig. 1. Spectral migration algorithm, based on [6].

The 1D temporal and spatial Fourier transforms and their
inverses are computed by the FFT and IFFT functions, using
the power-of-2 transform lengths denoted by NFFT

t and NFFT
x .

Upon execution of lines 3 and 4 in Fig. 1, we obtain the
(f, kx)-domain spectrum F[ · ] of size NFFT

t × NFFT
x . Then,

for each kx bin indexed by m = 1, 2, ..., NFFT
x , we remap

the f -axis points to the kz-axis points according to M[:,m, n]
and multiply the resulting data pointwise by A[:,m, n] (lines
6 and 7 in Fig. 1). In other words, we interpolate F[ · ] using
fmig(kz, kx, θn) and then scale it by A(kz, kx, θn) to get the
(kz, kx)-domain spectrum K[ · ] of size NFFT

t × NFFT
x . Next,

for each kz bin indexed by l = 1, 2, ..., NFFT
t , we transform

K[ · ] back to the (kz, x) domain (line 8 in Fig. 1) and apply
appropriate phase shifts exp(jπkzxm tan(θn)) specified by
E[:,m, n]. Finally, each angle-specific K[ · ] is added to C[ · ]
that represents the compounded 2D dataset C(kz, x) of size
NFFT
t × Nx. After processing all angles, the inverse Fourier

transform of C[ · ] along the kz-axis yields the (z, x)-domain
image dataset D[ · ], which is then Hilbert-transformed along
the z-axis to produce the desired output H[ · ] of size Nz×Nx.

III. FIXED-POINT RECONSTRUCTION

Fig. 2 depicts our scaled fixed-point computational flow
implementing the Fourier-domain reconstruction algorithm
from the previous section (see Fig. 1). In Fig. 2, the Fourier
transform calculations are performed by the 1D split-radix
FFT blocks [8] (see lines 3 and 4 in Fig. 1); however, the
number of iterations over both indices m = 1, 2, ..., Nx and
l = 1, 2, ..., NFFT

t is cut in half. Given that the input P[ · ]
is real-valued, its (f, x) spectrum will be symmetric, i.e., we
only need its positive-f portion (hence NFFT

t /2 iterations) to
compute the (f, kx) half-spectrum for subsequent remapping.
To get the positive-f portion of the (f, x) spectrum, we
process the t-axis data for xm and xm+1 in pairs (hence Nx/2
iterations): the former acts at the real part of the FFT input,
while the latter acts as the corresponding imaginary part [8].

During fixed-point computations, the real/imaginary data
values are restricted to the interval [−1,+1]. Whenever these
values fall outside the allowed limits, they undergo binary
scaling (i.e., division by some fitting power of 2) to enforce our
range restriction. After completing the temporal FFTs over all
x bins, we have the scaling factors S(x) associated with the f -
axis data vectors. Before starting the spatial FFTs, we equalize
the x-axis data vectors using the maximum of S(x). Similarly,
after completing the spatial FFTs over all positive-f bins, we
use the maximum of the scaling factors S(f), associated with
the kx-axis data vectors, to equalize the f -axis data vectors
prior to frequency remapping.

The REMAP/MULTIPLY block in Fig. 2 implements lines
6 and 7 in Fig. 1. Given a particular kx bin, we let the kz-
axis data values equal those found (via linear interpolation)
at fmig(kz, kx, θ) and scaled by A(kz, kx, θ). In Fig. 2, the
values of fmig(kz, kx, θ) and A(kz, kx, θ) are provided by
the inputs M[ · ] and A[ · ], respectively. Next, the resulting
(kz, kx) half-spectrum is fed into the spatial IFFTs that yield
the (kz, x) half-spectrum and the scaling factors S(kz). To
apply the phase shifts exp(jφ(kz, x, θ)), where φ(kz, x, θ) =
πkzx tan(θ), we first equalize the x-axis data vectors using the
maximum of S(kz), and then perform CORDIC-based phase
rotations [9] specified by φ(kz, x, θ). In Fig. 2, the values of
φ(kz, x, θ) are provided by the input R[ · ] (as opposed to the
input E[ · ] in Fig. 1).

After the phase-rotation step, each θ-specific half-spectrum
in the (kz, x) domain is compounded with the others (line 10
in Fig. 1) to produce half-sized C[ · ] over positive-kz bins.
Instead of expanding such C[ · ] into the full-sized symmetric
(kz, x) spectrum to undergo the NFFT

t -point IFFTs, followed
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N x
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N z

  iter.
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Fig. 2. Fixed-point scaled reconstruction.

by the Hilbert transforms (lines 12 and 13 in Fig. 1), we
obtain the desired output H[ · ] directly from half-sized C[ · ].
For each m = 1, 2, ..., Nx, we first expand C[ · ] into its full-
sized “analytic” version C∗[ · ] in accordance with [10]. Then,
we compute the NFFT

t -point IFFTs of the individual column
vectors of C∗[ · ] to get the Hilbert-transformed compounded
image dataset:

H[:,m]← IFFT(C∗[:,m], NFFT
t ). (9)

In other words, we have effectively eliminated line 13 in Fig.

1 by replacing symmetric C[ · ] with C∗[ · ] based on [10]. After
computing the IFFTs along the kz-axis for each x bin, we get
the (z, x)-domain output H[ · ] and the scaling factors S(x).
The final computational block in Fig. 2 equalizes the z-axis
data vectors using the maximum of S(x), and it also outputs
the absolute values of H[ · ] giving the envelope.

IV. EVALUATION RESULTS

For fixed-point arithmetic testing, we have used several
experimental datasets from PICMUS-2016 [11] that utilize
Na = 11 plane waves emitted at angles ±16◦, ±13◦, ±9.5◦,
±6.5◦, ±3.0◦, and 0◦. Specifically, we evaluate the following
imaging cases:

A) Two anechoic cylinder targets (cyst phantoms), Fig. 3;
B) Seven wire targets (point phantoms), Fig. 4;
C) Carotid artery – longitudinal section, Fig. 5;
D) Carotid artery – cross section, Fig. 6.

For any given angle θ, the Nt-by-Nx size of raw RF channel
data frames was 3328×128 in cases A and B, and 1536×128
in cases C and D. We generated the compounded B-mode im-
ages by log-compressing their respective normalized envelope
sections of size 1216× 128, covering the imaging depth from
5 to 50 mm as shown in Fig. 3-6 using the 60-dB dynamic
range. In all four cases, we let NFFT

t = 4096 and NFFT
x = 256,

giving MFFT
t = log2N

FFT
t = 12 and MFFT

x = log2N
FFT
x = 8.

Our fixed-point parameter settings are summarized in Table
I, with the wordlengths limited to 16 or 24 bits only. Since
the values of P[ · ], F[ · ], and K[ · ] are restricted to the [−1,+1]
range, the integer part of their signed fixed-point representation
is only 1 bit long. The number of fractional-part bits has been
set to 14, which is equal to max{MFFT

t ,MFFT
x } plus 2 extra

bits, in order to match the fractional-part length of the FFT
twiddle factors having sufficient resolution. When computing
C[ · ] and H[ · ], we have increased their fixed-point wordlength
by additional 8 bits for the benefit of CPWC.

TABLE I
FIXED-POINT PARAMETER SETTINGS.

Parameter P M A R F / K C / H

Signed Yes No Yes Yes Yes Yes
Int. Part 1 12 1 3 1 1

Frac. Part 14 12 14 12 14 22
Wordlength 16 24 16 16 16 24

To accommodate the permissible range of the fmig values
and to allow for the adequate interpolation accuracy, we let
the integer and fractional parts of unsigned M[ · ] have 12 bits
each, thus keeping its wordlength at 24-bit limit. As for A[ · ],
its fixed-point representation has been made compatible with
the data format of K[ · ] (via binary prescaling and redundant
signedness of the A values). Since the phase rotation block
in Fig. 2 may take any φ value between −2π and 2π, signed
R[ · ] has the integer part of 3 bits. We have allocated 12 bits
to its fractional part to maintain the target 16-bit wordlength.
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Fig. 3. Case A: Compounded images of the cyst phantoms (11 PWs).
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Fig. 4. Case B: Compounded images of the point phantoms (11 PWs).
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Fig. 5. Case C: Compounded images of the carotid artery longitudinal section
(11 PWs).
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Fig. 6. Case D: Compounded images of the carotid artery cross section (11
PWs).

The resulting B-mode images (reconstructed using our
fixed-point settings from Table I) are displayed in Fig. 3-6,
next to the reference images obtained with more precise but
more expensive floating-point calculations. As one can see,
the fixed-point and floating-point versions are almost indis-
tinguishable visually. To evaluate reconstruction differences
quantitatively, we have compared the fixed-point versions
of a 2D normalized envelope prior to log-compression (i.e.,
1216 × 128 datasets of values ranging from 0 to 1) to their
respective floating-point references. Our comparisons rely on
three measures of similarity listed in Table II: the structural
similarity index (SSIM), peak-signal-to-noise ratio (PSNR),
and mean absolute error (MAE). Table II also includes the
average data value of each fixed-point dataset, which provides
a baseline for MAE interpretation. Since the error values are
at least an order of magnitude smaller than the corresponding
averages, one can view the numerical distance between the
fixed-point and floating-point datasets as insignificant. The
PSNR values ranging from 48 to 65 dB and the SSIM values
exceeding 0.99 confirm that the fixed-point reconstruction
results are indeed very close to their respective floating-point
references.

TABLE II
NORMALIZED ENVELOPE SIMILARITY BETWEEN FIXED-POINT AND

FLOATING-POINT COMPOUNDED DATA (11 PLANE WAVES).

Case Mean MAE PSNR SSIM
A 1.090× 10−1 2.893× 10−3 47.81 dB 0.9965
B 1.288× 10−2 4.436× 10−4 65.09 dB 0.9993
C 3.074× 10−2 1.088× 10−3 54.65 dB 0.9981
D 1.701× 10−2 9.604× 10−4 54.21 dB 0.9987
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