Correlation Between the Resonator Properties and Fourier Transform Infrared Spectra of Silicon Oxynitride Films for Surface Acoustic Wave Devices

Satoru Matsuda Skyworks Solutions, Inc., Japan Satoru.Matsuda@skyworksinc.com Atsushi Nishimura Skyworks Solutions, Inc., Japan Yoshiro Kabe Skyworks Solutions, Inc., Japan Hiroyuki Nakamura Skyworks Solutions, Inc., Japan

Abstract—In this paper, we discuss the temperature coefficient of frequency (TCF) and Q factor in the structure of SiO_xN_y / LiTaO₃. We studied the relationship of the TCF and Q factor with the optical properties of the SiO_xN_y films measured by Fourier transform infrared spectroscopy (FT-IR). We found that the Q factor of the device increased while TCF was decreased as the Si-O bond angle decreased in SiO_xN_y film. These results indicate that the Si-O atomic structure measured by FT-IR governs the device properties even when the N dopant is added.

Keywords—SiO_xN_y film, TCF, Q factor, FT-IR, Si-O bond

I. INTRODUCTION

Surface Acoustic Wave (SAW) and Bulk Acoustic Wave (BAW) devices have been developed for the increasing number of the frequency bands. To meet the growing demand for high performance, thin amorphous dielectric films, silicon oxide (SiO₂) and a silicon nitride (Si₃N₄), were used to enhance the resonator performance. SiO₂ thin film has a positive temperature coefficient of elasticity (TCE) [1], and it is used for improving the temperature coefficient of frequency (TCF) of the devices. Si₃N₄ thin film is used for the passivation for the hermetic properties required [2].

In Refs. [3] and [4], the authors proposed to use a silicon oxynitride (SiO_xN_y) thin film for the temperature-compensated surface acoustic wave devices (TC-SAW). This was proposed because the longitudinal-wave sound velocity of a SiO_xN_y thin film changed from 6,000 to 10,000 (m/s), respectively, and due to the nitrogen ratio N_y increasing [5]. Then, through experimentation, it was verified that the frequencies of the devices shifted higher in the structure of $SiO_xN_y/LiTaO_3$ overlays as the nitrogen ratio N_y increasing. It was also shown that the Q factor of the device increased while TCF was decreased in this situation.

In this paper, the optical properties of the SiO_xN_y film are investigated, and then their correlation with the Q factor and TCF of the device is discussed. A series of SAW devices were fabricated using the SiO_xN_y /Al/LiTaO₃ structure, and their device performances were measured. The optical measurement was performed with the Fourier transform infrared spectroscopy (FT-IR) measurement [5], [6]. From the measurement results, we will discuss the mechanism of the Q factor and TCF with the nitrogen ratio N_y .

II. FILM PREPARATION AND FT-IR MEASUREMENT

SiO_xN_y films were deposited on (100) Si substrate by RF Sputtering in Ar/O₂/N₂ atmosphere. By changing the O₂/N₂ gas flow ratio from 0.25 to 0.40, we prepared three SiO_xN_y films which have different nitrogen ratio. SiO₂ and Si₃N₄ films were also deposited as a reference. Refractive index was measured by Ellipsometer and nitrogen ratio was measured by the X-ray photoelectron spectroscopy (XPS) method. As shown in Table.1, we prepared three SiO_xN_y films with the nitrogen ratio r=14.8, 24.4 and 43.3 atomic %, respectively, in the same condition of the reference [3], [4].

The FT-IR measurements were performed for wave numbers between 400 and 1500 cm⁻¹ with a pitch of 1 cm⁻¹. In SiO_xN_y films, the FT-IR spectra showed two main peaks around 470 and 1000 cm⁻¹ (Fig. 1). It is known that they are clarified with the direction of vibration of a rocking mode (ω_1 : ~450 cm⁻¹) and a stretching mode (ω_4 : ~1070 cm⁻¹) in the Si-O bonding [7], [8]. It is also known that Si-N bonding located at 890 cm⁻¹ [9]. It can be seen clearly in the sample C.

Table 1. Refractive index and N ratio r of prepared samples

Sample	Dielectric	Refractive index at 633nm	y/(x+y)%
А	${\rm SiO_xN_y}$	1.558	13.8
В	${ m SiO}_x { m N}_y$	1.610	25.8
С	${ m SiO}_x { m N}_y$	1.712	42.1
Ref.	SiO_2	1.478	0
Ref.	SiN	2.019	100

Fig.1 FT-IR spectra of the SiO_xN_y films

Table 2. FT-IR peaks of prepared samples

Sample	Dielectric	$\begin{array}{c} \operatorname{Rocking} \operatorname{mode} \\ \omega_1 \end{array}$	Stretching mode ω_4
А	SiO _x N _y	461	1031
В	${\rm SiO_xN_y}$	467	997
С	${\rm SiO_xN_y}$	476	974
Ref.	SiO ₂	457	1072
Ref.	SiN	492	890

Table 2 shows measured ω_1 and ω_4 of prepared samples. It is seen that SiO_xN_y films shows higher ω_1 , lower ω_4 and the wider full width of half maximum (FWHM) $\Delta \omega_4$ of the absorption peaks as the nitrogen ratio N_y increasing.

III. RESONATOR PROPERTIES

We fabricated one-port resonators by forming an IDT electrode with Al on a $42^{\circ}Y-X$ LiTaO₃ substrate. Then, the dielectric films of SiO_xN_y were deposited under the same conditions listed in Table 1 (SiO₂ and Si₃N₄ also deposited as a reference).

For a quality factor measurement, the Al film thickness were set to be $h/\lambda_{IDT} = 0.085$ and 0.077, and SiO_xN_y film thicknesses were set to be $h/\lambda_{IDT} = 0.1$ and 0.091 (λ_{IDT} was set to be 2.0 and 2.2µm, respectively). Figure 2 shows the input admittance Y of the one-port resonators. Table 3 shows the variation of estimated frequency and Q factor at the anti-resonance frequencies. It is seen that the SAW velocity V and the Q_a increased as the nitrogen ratio Ny increasing.

Figures. 3 and 4 show the correlation between Q_a and IR peak wavenumber. It is seen that Q_a increased as the ω_1 became higher, the ω_4 became lower. It is known that the Si-O bond angle is lower in the SiO_xN_y film when the ω_1 is higher and the ω_4 is lower [10]. These results indicate that the Q factor of the device is caused by the Si-O bond angle shift.

For the TCF measurement, the Al and SiO_xN_y film thicknesses were set to be $h/\lambda_{IDT} = 0.04$ and $h/\lambda_{IDT} = 0.25$ for a TCF measurement (λ_{IDT} was set to be 2.0µm, respectively).

Fig.2 Measured Admittance of the SAW resonators

Table 3. Measured Q factor of prepared samples

Sample	Dielectric	$Q_a(\lambda=2.0mm)$	$Q_a(\lambda=2.2mm)$
А	${ m SiO}_x { m N}_y$	334	428
В	${ m SiO}_{ m x}{ m N}_{ m y}$	342	463
С	${ m SiO}_{ m x}{ m N}_{ m y}$	455	615
Ref.	SiO_2	187	193
Ref.	SiN	640	581

Fig.3 Relationship between ω_1 and Q_a

Fig.4 Relationship between ω_4 and Q_a

Table 4 shows the variation of estimated TCF. It is seen that the TCF decreased as the nitrogen ratio N_v increasing.

Figures. 5 and 6 show the correlation between TCF and IR peak wavenumber. It is seen that TCF increased as the ω_1 became lower, the ω_4 became higher. These results well agree

Fig.6 Relationship between ω_4 and Qa

with the previous results [5], indicating that the TCF of the device with SiO_xN_y film is also principally governed by the change in the Si–O bond angle.

IV. SUMMARY

This paper discusses the optical properties of the SiO_xN_y film for the temperature compensated SAW devices using the $SiO_xN_y/LiTaO_3$ structure. From the FT-IR measurement, it was experimentally verified that the Q factor of the device increased while TCF was decreased as the peak frequency ω_4 of Si-O bond decreased and its peak width $\Delta\omega_4$ increased by the nitrogen ratio N_y increasing.

It is known that the Si-O bond angle is around 144° [8] and Si-N bon angle is around 120° [11]. In the situation, Si-O bond angle shift smaller and the distribution of the bond angle is larger. The smaller Si-O bond angle leads to increase and less space to move. In this situation, the sound velocity increased and decrease the temperature coefficient of velocity (TCV) [12]. These results indicated that the tradeoff between the the Q factor and TCF is governed by the bonding structure in the SiO_xN_y film.

REFERENCES

- [1] T. E. Parker and M. B. Schulz, Appl. Phys. Lett. 26, 1975, pp.75-77.
- [2] F. S. Hickernell, 2001 IEEE MTT-S Digest, 2001, pp.363-366.
- [3] A. Nishimura, S. Matsuda, Y. Kabe, and H. Nakamura, Jpn. J.Appl. Phys. 57, 07LD23 (2018).
- [4] A. Nishimura, S. Matsuda, Y. Kabe, and H. Nakamura, Proc. IEEE Ultrason. Symp, 2018, pp.1-4.
- [5] S. Matsuda, M. Hara, M. Miura, T. Matsuda, M. Ueda, Y. Satoh, and K. Hashimoto, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 8, pp. 1684–1687, 2011.
- [6] S. Matsuda, M. Hara, M. Miura, T. Matsuda, M. Ueda, Y. Satoh and K. Hashimoto, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 1, pp. 135-138, 2012.
- [7] P. G. Pai, S. S. Chao, Y. Takagi and G.Lucovsky, J. Vac. Sci. Technol. A 4, 1986, pp.689-694.
- [8] G. Lucovsky, M. J. Manitin, J. K. Srivastava and E. A.Irene, J. Vac. Sci. Technol. B 5, 1987, pp.530-537.
- [9] F. Rebib, E. Tomasella, E Be[^]che, J. Cellier, and M. Jacquet, J. Phys.: Conf. Ser.,100, 082034 (2008).
- [10] P. N. Sen, M. F. Thorp, Phys. Rev. B 15, 1977, pp.4030-4038.
- [11] H. F. W. Dekkers, Nagendra Babu Srinivasan, G. Pourtois, Appl. Phys. Lett. 96 (2010) 011902
- [12] A. Nagakubo, S. Tsuboi, Y. Kabe, S. Matsuda, A. Koreeda, Y. Fujii, and H. Ogi, Appl. Phys. Lett. 114 (2019) 251905