High Performance Piezoelectric Ceramics and Crystals

Thomas R. Shrout¹, Dabin Lin¹, Fei Li², Jun Luo³, Takayuki Och³, Shujun Zhang⁴ ¹Materials Research Institute, The Pennsylvania State University, University Park, PA, US, ²EMRL, Key Lab of the Ministry of Education, Xi'an Jiaotong University, Xi'an, China, ³TRS Technologies, Inc., 2820 East College Avenue, State College, PA, US, ⁴ISEM, Australian Institute for Innovative Materials, University of Wollongong, NSW, Australia

Background, Motivation and Objective

Piezoelectric materials lie at the heart of electromechanical transducers. Applications include actuators, underwater sonar, non-destructive evaluation (NDE) resonators, sensors and medical ultrasound. The piezoelectric coefficient d_{33} , electromechanical coupling (k_{33}) and dielectric permittivity (ϵ_{33}/ϵ_0) are key parameters in determining device performance. In this paper, we review current "state of the art" polycrystalline and single crystal piezoelectric materials, that include modified PZT ceramics and Relaxor-PT based ferroelectric crystals, the later offering ultrahigh electromechanical coupling coefficients $k_{33} > 90\%$ vs 75% for ceramics.

Though limited in coupling, advances continue to be made in polycrystalline piezoelectrics including reduced grain size, allowing finer scale machining and increasing coercive field and thus, field stability during device operation. Fabrication of 5 inch diameter Relaxor PT crystals (PMN PT) and 4 inch PIN-PMN-PT crystals offer significant cost reduction, opening up new market areas.

Results/Discussion

Recent developments have experimentally confirmed that the piezoelectricity of relaxor ferroelectric can be further improved by introducing local structural heterogeneity via a dopant strategy. Both modified polycrystalline ceramics and single crystals were found to exhibit ultrahigh piezoelectric coefficients d₃₃, (ceramics up to 1500pC/N and single crystals up to 4000pC/N). Furthermore, the dielectric permittivity was found to be greater than 10,000 with a relatively good temperature stability compared to state of the art "soft" piezoelectrics, see figure 1 [1]. Investigations on the role of AC poling to further enhance properties will also be presented.

Ceramics	ϵ_{33}/ϵ_0	d ₃₃ (pC N ⁻¹)
PMN-29PT	2600	360
PMN-36PT	5200	620
* 2.5Sm-PMN-29PT	13000	1510
* 2.5Sm-PMN-31PT	10000	1250
Commercial PZT5H	3400	650
Commercial PZT5	1700	500

Note: d₃₃ measured by Berlincourt d₃₃-meter

* This work

Figure Piezoelectric and dielectric properties of Sm-PMN-PT ceramics. Comparison of piezoelectric coefficients and relative dielectric permittivities of the 2.5Sm-PMN-29PT and 2.5Sm-PMN-31PT ceramics with PMN-*x*PT and state-of-the-art "soft" PZT ceramics.

[1] F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, Z. Xu, Q. Huang, X. Liao, L. Q. Chen, T. R. Shrout and S. J. Zhang, "Ultrahigh piezoelectricity in ferroelectric ceramics by design," Nature Materials 17 (2018) 349-354.