
A Time-Frequency Independent Component Analysis 
Method for Group Velocity Extraction of Ultrasonic 

Guided Waves 
Sijia Lou1, Kailiang Xu*1, 2, Xue Jiang1, 2, Bo Hu1, Lawrence H. Le3, Dean Ta1, 2 

1 Department of Electronic Engineering, Fudan University, Shanghai, 200433, China. 
2 Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong, 519000, China. 

3 Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, T6G2R3, Canada. 

Abstract—Ultrasonic guided waves play an important role in 
non-destructive evaluation (NDE). Nevertheless, the multi-mode 
dispersion still brings challenges for mode identification and the 
waveguide evaluation. In this study, we propose a multimodal 
separation method combining short-time Fourier transform 
(STFT) with independent component analysis (ICA). The 
simulation result shows that this method can realize an automatic 
mode identification and group velocity extraction, which can be 
helpful in the waveguide assessment. 
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I. INTRODUCTION

Ultrasonic guided waves have been widely used for non-
destructive evaluation (NDE) [1]. However, due to the mode 
conversion and dispersion, the received signal usually contains 
multiple modes, which brings challenges for mode identification 
and waveguide evaluation. 

The time-frequency representation (TFR) method has been 
widely applied to analyze the dispersion characteristic of the 
ultrasonic guided waves. The technique projects the temporal 
signals into the time-frequency domain, thus allowing the 
component of each mode be identified as individual time-
frequency trajectory. A considerable number of signal 
processing methods have been proposed to extract the single 
mode components from multimodal guided signals. Xu et al. [2] 
introduced the so-called Crazy-Climber method into the signal 
processing of ultrasonic guided waves, which allows to separate 
time-frequency ridges of individual modes from TFR of 
multimodal signals. The Crazy-Climber method has been 
applied to analyze the guided waves in the long bone [3]. Zoubi 
et al. [4] applied the Crazy-Climber method for mode separation 
and anomaly imaging. Yang et al. [5] used a generalized warblet 
transform to improve the energy concentration in the time-
frequency domain. Zhang et al. [6] combined the time-
frequency energy distribution with image segmentation 
technology to realize multimodal guided waves separation. Liu 
et al. [7] introduced synchrosqueezed wavelet transform (SWT) 
to increase the resolution of time-frequency energy 
representation. He et al. [8] applied the time-reassigned 

synchrosqueezing transform (TSST) to impulse-like signals, 
which promotes the energy concentration in the time direction 
specifically. 

Other than the TFR method, some other mode extraction 
methods have been introduced. Radon transform can be used to 
project the array signals into the slowness-time domain, so that 
different mode components can be identified according to 
different slowness [9-11]. Xu et al. [12] proposed a dispersion 
compensation based mode separation method. With the known 
dispersion curves, the desired mode can be compensated into a 
pulse and can thus be separated using a temporal window. 
Dispersive Radon transform [13], which can map the 
multichannel dispersive signals of each individual mode into a 
well localized region in the dispersive Radon domain, provides 
an efficient solution for mode identification and extraction. 
Based on the sparsity of the dispersion curves in the frequency-
wavenumber domain, Gao et al. [14] employed compressed 
sensing to separate mode superposition. 

Different from the previous studies of time-frequency 
analysis based guided mode separation, instead of applying the 
time-frequency ridges extraction, we intend to combine STFT 
with independent component analysis (ICA) for realizing an 
automatic multimodal separation and group velocity extraction. 
Assuming that the received signal is a summation of 
independent non-Gaussian signals, ICA is a useful tool for blind 
source separation. It has been widely applied to mixed signal 
processing, such as speaker verification [15], 
electroencephalographic (EEG) source localization [16], 
communication systems [17], and fault analysis [18]. 

In this paper, a finite-difference time-domain (FDTD) 
simulation is used to obtain the multimodal simulated signals 
with different incident angles. The temporal signals are mapped 
into time-frequency domain using STFT method. ICA is used to 
separate the independent components afterwards. After mode 
separation, the frequency-dependent group velocity of each 
mode is further acquired. 

II. MATERIALS AND METHODS

A. Short Time Fourier Transform

The classical STFT [19] is employed to obtain the time-
frequency distribution of the guided wave signals. For a given 
signal xi(t), it is expressed as follows: 

xi(t,f)=∫ xi(τ)g(τ-t)+∞
-∞ exp(-j2πfτ)dτ,  (1) 

This work was supported by the National Natural Science Foundation 
(11525416, 11974081, 11827808 and 11604054), Natural Science Foundation 
of Shanghai (19ZR1402700), Shanghai Municipal Science and Technology 
Major Project (2017SHZDZX01) and State Key Laboratory of ASIC and 
System Project (2018MS004). Corresponding author: Kailiang Xu, 
xukl@fudan.edu.cn. 

Program Digest, 2019 IEEE International Ultrasonics Symposium (IUS)
Glasgow, Scotland, October 6-9, 2019

978-1-7281-4595-2/19/$31.00 ©2019 IEEE WeH7.5



where g(τ-t) is a window function with t as its center. In this 
research, Gaussian window function is used. The window length 
is set as 1/20 of that of the temporal signal. The inverse STFT 
can also be applied to transform the xi(t,f) backward to the xi(t). 

B. Independent Component Analysis 

After STFT, the ICA method is used to achieve the 
independent component separation. In order to simplify the 
calculation, preprocessing methods, including de-average and 
whitening, are usually employed before ICA. 

The time-frequency distribution of a signal is assumed to be 
a linear superposition of multiple independent modes: 

X=AS,   (2) 

where X  and S  denote the matrix of received signals and 
independent components respectively, and A is the coefficient 
matrix. What should be paid attention to is that at least n 
observations are needed to recover n independent modes from 
the mixture. The variables in X  have zero mean and unit 
variance, which can be guaranteed through de-average and 
whitening. The main idea of ICA is to seek the optimal 
representation of the matrix W to estimate S: 

Y=S�=WX.    (3) 

Through approximations of negentropy, fast ICA [20] 
transforms the mutual information minimization problem into 
an optimization problem: 

maximize J(wi)=∑ [E{G(wi
Txi)}-E{G(v)}]2n

i=1 ,  (4) 

where n equals the number of independent components in S, wi 
and xi are variables in W and X, v is a standardized Gaussian 
variable, and G(∙)  is a non-quadratic function. G(∙)=(∙)4/4  is 
adopted here. The fixed-point iterative scheme is used, then, to 
find a concrete representation of W. 

After ICA mode separation, each individual component can 
be obtained, and the multimodal signals can be reconstructed 
through X�=W-1S� . In order to evaluate the reconstruction of the 
proposed algorithm, instead of the comparison of the TFR of the 
extracted components to the dispersion curves, the multimodal 
signals are also reconstructed through inverse STFT and 
compared with the original input signals. The similarity between 
two different signals is measured by the normalized cross-
correlation coefficient: 

 rij = ∑ xi(k)xj(k)k /�∑ xi
2(k)∑ xj

2(k)kk . (5) 

The more similar the two signals are, the closer the value is 
to 1. 

C. Simulation Settings 

TABLE I.  MATERIAL PARAMETERS OF THE STEEL PLATE 

Parameters 
h 

(𝑚𝑚𝑚𝑚) 
ρ  

(𝑘𝑘𝑘𝑘/𝑚𝑚3) 
𝑐𝑐𝑇𝑇 

(𝑚𝑚/𝑠𝑠) 
𝑐𝑐𝐿𝐿 

(𝑚𝑚/𝑠𝑠) 
Steel Plate 3 7932 3200 5960 

A FDTD algorithm is used to simulate the propagation of 
Lamb waves in a steel plate. The relevant parameters [12] are 

presented in Table Ⅰ, where ℎ is the thickness of the plate, ρ is 
the density of steel, cT  and cL  correspond to the shear and 
longitudinal wave velocity respectively. The spatial step ∆d is 
50 μm, while the temporal step ∆t is 3 ns.  

A 5 cycle Gaussian amplitude-modulated sinusoidal signal 
is used as the excitation, whose center-frequency is 1 MHz, and 
-3 dB bandwidth is 0.28 MHz.  

Axial transmission signal is applied in the simulation, i.e. 
probes are placed on the same side of the plate. The propagation 
distance is 200 mm. Mode selection can be achieved through 
adjusting the angle of incidence. To obtain combinations of the 
same set of modes at different weights, signals are excited at 
different angles (30°, 50°, and 60°) and received at the same 
location. 

III. RESULTS 

A. Short Time Fourier Transform Results 

Figure 1 shows three independent measurements in the time-
frequency domain with the incident angles being 30°, 50° and 
60° individually. Different colors correspond to different energy 
levels, high in red and low in blue. Theoretical dispersion curves 
calculated through the Rayleigh-Lamb equation are plotted as a 
reference in black lines. Comparing with the theoretical 
dispersion curves, A0, S0, and S1 modes can be observed. The 
energy of each mode varies for different incident angles. 

 
Fig. 1. Time-frequency representation of the received signals through STFT. 
Red and blue denote the most energetic and weak part, respectively. The black 
lines are theoretical dispersion curves. The emission angles are (a) 30°; (b) 50°; 
(c) 60°. 
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B. Multimodal Separation 

 
Fig. 2. Extracted individual time-frequency components of (a) S1; (b) A0; (c) 
S0. The energy ridges are marked with red dots with white border. 

The separation result is depicted in Fig. 2. Mode separation 
is performed on the basis of the characteristics of the three 
received signals. The main components in Fig. 3 (a-c) are S1, 
A0 and S0 mode. After the mode extraction, the time-frequency 
energy ridge of each mode can further be extracted. The red dots 
with white border are the sampling points of their ridges. As 
shown in Fig. 3 (c), part of A0 mode energy leaks into the S1 
mode components. 

C. Temporal Multimodal Signal Reconstruction 

 
Fig. 3. The simulated and reconstructed signals. The simulated signals are 
presented in blue, with the reconstructed ones in red. Amplitude normalization 
is performed on each signal. The emission angles are (a) 30°; (b) 50°; (c) 60°. 

As the received signals are considered as a linear 
superposition of multiple modes, the input signals can be 
reconstructed using the extracted components. Fig. 3 compares 
the simulated (the blue one) and reconstructed (the red one) 
signals. The amplitude of each signal is normalized. According 
to Eq. 5, the correlation coefficients of the three sets of signals 
are all 0.9998, which illustrates a good mode extraction and 
reconstruction. 

D. Group Velocity Estimation 
According to the energy ridges extracted in Fig. 2, the 

reaching time of each sampling dot can be acquired. As the 
distance between transmitter and receiver is known, frequency-
dependent group velocity can be calculated directly. Fig. 4 
exhibits the group velocity estimation results of different modes 
in the simulation. The average error rates of A0, S0 and S1 are 
0.15%, 3.71% and 11.00% respectively. 
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Fig. 4. Group velocity estimation results of separated components. The 
separated component 1-3 are S1, A0 and S0 in turn. 

IV. CONCLUSION 
In the study, a time-frequency ICA method was applied to 

separate the individual components from the overlapping 
multimode guided waves. Without the prior knowledge of 
waveguide, the proposed method can separate independent 
components in the time-frequency domain automatically. After 
mode separation, the group velocity of each mode was estimated. 
The simulated results show that estimates are consistent with the 
theoretical curves. It illustrates that the proposed time-frequency 
ICA method has a potential for the development of an automatic 
mode separation and group velocity estimation. 
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