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Abstract—Beamforming is an indispensable process to obtain
an ultrasound image. In most of clinical ultrasound systems,
the delay-and-sum (DAS) beamformer is implemented. The
DAS beamformer applies time delays to ultrasonic echo signals
received by individual transducer elements in an ultrasonic probe
so that the phases of echoes from a point at the focus are aligned
and, then, the delay compensated signals are summed to enhance
the echo signal from the focal point. The DAS beamformer is very
computationally efficient and suitable for real-time processing.
On the other hand, its ability in suppression of off-axis signals is
limited. To improve the performance of ultrasound beamformers,
various studies on adaptive beamformers have been conducted
for a long time and still being continuing nowadays. This paper
provides a brief review on adaptive beamformers, particularly
on the coherence-based adaptive imaging and its relation to the
minimum variance beamforming.

Index Terms—adaptive beamforming, coherence, minimum
variance, noise estimate

I. INTRODUCTION

Ultrasound beamforming methods are required to create
a directivity in a transmit ultrasonic field. However, receive
beamforming is particularly focused when we discussed adap-
tive beamformers, and we also focused on receive beamform-
ing in this paper. In most of clinical ultrasound scanners,
the delay-and-sum (DAS) beamforming is used. Ultrasound
beamformers are required to extract echoes from every spatial
point in an imaging field of view and construct an ultrasound
image. The DAS beamformer applies time delays to ultrasonic
echo signals received by individual transducer elements in an
ultrasonic probe so that the phases of echoes from a point at
the focus are aligned. The delay-compensated element echo
signals are summed to obtain the output of the beamformer.
The DAS beamformer is very computationally efficient and
suitable for real-time processing. On the other hand, its ability
in suppression of off-axis signals is limited.

For improvement of the performance of ultrasonic beam-
formers, various adaptive imaging methods have been devel-
oped. Hollman et al. introduced the coherence factor (CF),
which had been developed previously [2], in medical ul-
trasound imaging to investigate effects of phase aberrations
and evaluate ultrasound image quality [1]. In [1], CF was
defined as the ratio of the coherent sum to the incoherent
sum of the delay-compensated element echo signals. Figure 1
illustrates delay-compensated echo signals obtained from indi-
vidual transducer elements. The phases of delay-compensated
echo signals are aligned when the source of the echo (scatterer)
is located at the focal point as illustrated in Fig. 1(a). In such
a case, the coherent sum of the element echo signals across

the array is high. Figure 1(b) illustrates the case when the
source of the echo is not located at the focal point. In such a
case, the phases of the element echo signals are not aligned
and, as a result, the coherent sum of the element echo signals
becomes low. The incoherent sum of the element echo signals
corresponds to the total received energy, and CF, which is the
ratio of the coherent sum to the incoherent sum, can evaluate
focusing quality. The coherent sum of the element echo signals
is also reduced by the phase aberration and, therefore, CF can
evaluate effects of the phase aberration.

Fig. 1. Illustration of ultrasonic echo signals received by individual trans-
ducer elements in ultrasonic probe after delay compensation done by DAS
beamformer. Locations of focal point and scatterer are coincident (a) and
incoincident (b).

As described above, CF obtained from an off-axis echo
signal is small. Based on such fundamental characteristics of
CF, Li and Li later developed an adaptive imaging method, in
which CF was used to weight outputs from a DAS beamformer
to suppress a beamformed signal suffered from off-axis echo
signals [3]. It was reported that the lateral resolution and
contrast were improved by weighting the DAS beamformer
output with CF.

The above-mentioned adaptive imaging method weights
the output of the DAS beamformer with CF. On the other
hand, Synnevåg et al. introduced the minimum variance (MV)
beamformer [4], which had been developed previously by
Capon [5], to determine beamforming weights to element echo
signals adaptively. In DAS beamforming, a fixed beamforming
weight, such as rectangular and Hanning apodization, is used.
The MV beamformer determines the beamforming weights
depending on received element echo signals and realizes
significant improvements in lateral resolution.

In the adaptive determination of the beamforming weights,
the noise covariance matrix needs to estimated, and it is an
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very important step in MV beamforming which determines
quality of a resultant image. The covariance matrix is in
general estimated from the received element echo signals.
Needless to say, the received element echo signals contains
a desired echo signal from a point at the focus. To suppress
components which is coherent with the echo signal from a
point at the focus, the spatial smoothing technique, namely,
sub-array averaging, was introduced to obtain an estimate
of the noise covariance matrix [4], [6]. Also, a constant
value was added to the diagonal of the estimated covariance
matrix to increase the robustness because the inversion of
the covariance matrix is necessary to obtain the adaptive
beamforming weights.

As described above, the estimation of noise, in this case,
including off-axis components, electrical noise, etc. is very
important in adaptive imaging. Although there are a number of
new adaptive beamforming methods, including delay multiply
and sum beamforming [9], pixel based beamforming [10],
aberration correction [11], and deep-learning based beamform-
ing [12], developed so far, this paper concentrates on the
brief review of methods for estimation of noise in adaptive
beamforming and their relation to coherence-based imaging,
which is described in [8].

II. PRINCIPLES

A. Coherence factor (CF)

Let us define a vector of ultrasonic echo signals received
by individual transducer elements as follows:

s = [s0, s1, s2, ..., sM−1],
T (1)

where M is the number of elements in an array, and T denotes
the transpose operation.

In the DAS beamforming, the beamformer output pDAS is
obtained as follows:

pDAS = wH · s, (2)

where H denotes the conjugate transpose operation, and w is
a beamforming weight vector expressed as follows:

w = [w0, w1, w2, ..., wM−1]
T. (3)

In the present study, sm (m = 0, 1, 2, ...,M − 1) denotes
delay-compensated element echo signals. In such a case, w
becomes a vector of ones, which corresponds to rectangular
apodization.

In [1], [3], CF is defined as follows:

CF =

∣∣∣∣∣
M−1∑
m=0

sm

∣∣∣∣∣
2

M
M−1∑
m=0

|sm|2
. (4)

B. Minimum variance beamforming

From Eq. (2), the expected power of a beamformer output
pBF is obtained as follows:

E
[
|pBF|2

]
= E

[
wHsHsw

]
= wHRw, (5)

where R is a covariance matrix.
The minimum variance beamformer estimates the beam-

former weights wMV so that the variance of the beamformer
output is minimized, while keeping echo signals from a
direction of interest unaffected. This can be achieved as

wMV = argmin
w

E
[
|ws|2

]
= argmin

w
wHRw, subject to wHa = 1, (6)

where a is a steering vector and is a vector of ones when the
time domain delay compensation is applied to element echo
signals. The solution is obtained as follows:

wMV =
R−1a

aHR−1a
(7)

C. Wiener beamforming

The Wiener beamformer estimates the beamforming weights
in a minimum mean square error sense [8]. The optimization
problem is expressed as follows:

wwiener = argmin
w

E
[∣∣p−wHs

∣∣2] . (8)

The solution to this problem is obtained as follows:

wwiener = |p|2 R−1a, (9)

where p is the amplitude of an echo from the focal point.
Let us model the element echo signal as follows:

s = pa+ n, (10)

where n = [n0, n1, n2, ..., nM−1]
T is zero-mean random

noise. In this case, Eq. (5) can be rewritten as follows [8]:

R = |p|2 aaH + nnH = |p|2 aaH +Rn, (11)

where Rn = nHn is the noise covariance matrix.
Using the relation of Eq. (11), Eq. (9) can be rewriting as

follows:

wwiener =
|p|2

|p|2 +wMV
HRnwMV

wMV. (12)

By referring to Eq. (5), it is found that the second term in
the denominator of Eq. (12) corresponds to the power of the
residual noise in the output of the MV beamformer. Therefore,
the output of the Wiener beamformer corresponds to the output
of the MV beamformer multiplied by a scalar factor depending
on the amplitude of a signal of interest and residual noise.

It was shown that the scaler parameter in Eq. (12), namely,
Wiener postfilter, can be available for any distortionless
beamformer, including the DAS beamformer [8]. The Wiener
postfilter Hwiener can be obtained by solving a minimization
problem as

Hwiener = argmin
w

E
[∣∣p−HwHs

∣∣2] . (13)
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The solution to this problem is obtained as follows:

Hwiener =
|p|2

wHRw
=

|p|2

|p|2 +wRnw
. (14)

As shown in Eq. (5), the power of a beamformer output
is wHRw = |p|2 + wHRnw. By multiplying a scaler
factor of Hwiener in Eq. (14), the power of a beamformer
output becomes |p|4 /

(
|p|2 +wHRnw

)
, which is closer to

the power |p|2 of a signal of interest. The Wiener postfilter
try to recover the distortion in the amplitude of a beamformer
output, however, the scaler factor is multiplied to both a signal
of interest and noise. Therefore, it does not change the signal-
to-noise ratio of the beamformer output. It is a quite different
nature of the Wiener postfilter from the MV beamformer.

D. Noise estimate in CF

The relation between the Wiener postfilter and CF is also
shown in [8]. Since the DAS beamformer assumes noise
contained in the received signal as white noise, CF in Eq.
(4) is rewritten as follows:

CF =

∣∣∣∣∣
M−1∑
m=0

sm

∣∣∣∣∣
2

∣∣∣∣∣
M−1∑
m=0

sm

∣∣∣∣∣
2

+
1

M

M−1∑
m=0

∣∣∣∣∣sm − 1

M

M−1∑
i=0

si

∣∣∣∣∣
2

=
|p|2

|p|2 +MwHRnw
,

for Rn = σ2I and w =
1

M
1, (15)

where σ2
n and I are the power of noise and identity matrix,

respectively, and 1 denotes a vector of ones.
From the comparison of Eq. (15) with Eq. (14), it is found

that CF overestimates the output noise power by a factor of
M . Therefore, CF causes excessive suppression of echo signals
with noise. It is preferable to estimate the power of noise in
a Wiener-postfilter sense.

E. Noise estimators

As described above, the estimation of noise is very impor-
tant in adaptive imaging. A few methods for estimation of
noise is presented in [8].

As described above, the output noise power is expressed as
follows:

E
[∣∣wHn

∣∣2] = wHRnw. (16)

By assuming that an estimate of a signal of interest p̂ is
obtained by DAS or MV beamformer, the residual noise is
expressed by (s− p̂1). Therefore, the noise covariance matrix
is estimated as follows:

R̂n =
1

K

K−1∑
k=0

(sk − p̂1) (sk − p̂1)
H
, (17)

where sk = [sk, sk+1, ..., sk+L−1], and L denotes the number
of elements in a sub-array. An averaging method taken in Eq.
(17) is called the sub-array averaging, which is also used to
obtain a robust estimate of the covariance matrix in Eq. (7).

Another method for estimation of the output noise power is
realized by assuming white noise. Under such an assumption,
the noise covariance matrix is expressed as follows:

R̂n =
1

M

M−1∑
m=0

|sm − p̂|2 I = σ̂2
nI. (18)

III. EXPERIMENTAL RESULTS

In this section, the definitions of CF and Wiener postfilter
are given by Eqs. (4) and (14). In the present study, the
performances of those adaptive imaging methods were exam-
ined in plane-wave high-frame-rate ultrasound imaging. An
ultrasonic probe at a center frequency of 7.5 MHz with 192
transducer elements at spacing of 0.1 mm was used. Ultrasonic
echo signals received by individual transducer elements in the
probe was acquired at a sampling frequency of 31.25 MHz.
Each receiving beam was obtained with echo signals from 72
elements.

Figures 2(1) and 2(2) are ultrasonic images of strings
embedded in tissue mimicking material and anechoic cyst
phantom, respectively. Those images were obtained by DAS
beamforming with CF (Fig. 2(a)) and Wiener postfilter (Fig.
2(b)). In the images of the strings, the lateral resolution,
which is the lateral width at half maximum of an echo from
the string, is improved from 0.32 mm to 0.24 mm using
the Wiener postfilter. Also, the visibility of echoes from
speckle generating material is also improved by the Wiener
postfilter because the excessive suppression of echoes affected
by interference is reduced in comparison with CF. On the other
hand, the contrast ratio evaluated from the images of the cyst
phantom was slightly decreased from -0.2 dB to -0.5 dB. The
contrast-to-noise ratios (CNRs) obtained with CF and Wiener
postfilter were -1.8 dB and -2.4 dB, respectively.

Fig. 2. B-mode images of string (1) and anechoic cyst (2) phantoms. Images
are obtained by DAS beamforming with CF (a) and Wiener postfilter (b) and
shown with dynamic range of 80 dB.

As described in Section II-C, the power of a beamformer
output with the Wiener postfilter is |p|4 /

(
|p|2 +wHRnw

)
.
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In other words, a distorsionless amplitude estimate can be
obtained with a scaling factor, which is the square root of the
Wiener postfilter. Therefore, beamformer outputs multiplied
by the square root of the Wiener postfilter was compared with
the DAS beamformer, which is also one of the distorsionless
beamformers. Figures 3(1) and 3(2) show B-mode images of
strings embedded in tissue mimicking material and anechoic
cyst phantom, respectively. Those images were obtained with
DAS beamforming only (Fig. 3(a)) and DAS beamforming
followed by weighting with the square root of the Wiener
postfilter (Fig. 3(b)).

As can be seen in Fig. 3(1), the lateral resolution obtained
with a scaling factor of the square root of the Wiener postfilter
was 0.31 mm, which was significantly better than that obtained
by the DAS beamforming of 0.54 mm. The lateral resolution
obtained with the square root of the Wiener postfilter was still
better than that obtained with CF.

The contrast ratios were evaluated from the images of the
cyst phantom shown in Fig. 3(2). The contrast ratio obtained
with a scaling factor of the square root of the Wiener postfilter
was -1.3 dB, which was worse than that obtained with CF
(-0.2 dB) but significantly better than that obtained by the
DAS beamforming (-3.3 dB). The CNR obtained with a scaling
factor of the square root of the Wiener postfilter was 0.2 dB,
which was worse than that obtained by the DAS beamforming
(4.1 dB) but significantly better than that obtained with CF (-
1.8 dB).

Fig. 3. B-mode images of string phantom (1) and anechoic cyst phantom (2).
Images are obtained by DAS beamforming only (a) and DAS beamforming
with square root of Wiener postfilter (b) and shown with dynamic range of
60 dB.

Figures 4(1) and 4(2) shows B-mode images of string and
anechoic cyst phantoms, respectively. The images in Figs.
4(a) and 4(b) were obtained with CF and Wiener postfilter
estimated with MV beamforming, respectively. The lateral
resolutions, contrast ratios, and CNRs obtained with CF and
Wiener postfilter were 0.12 mm and 0.17 mm, -1.7 dB and
-0.1 dB, -7.7 dB and -8.6 dB, respectively.

IV. CONCLUSION

Recently, adaptive beamforming methods are intensively
studied because programmable ultrasound scanners, which

allow us to acquire ultrasonic echo signals received by in-
dividual transducer elements in an ultrasonic probe, are now
widely available. As shown by the experimental results in
this paper, adaptive beamformers improves resolution and
contrast significantly, however, the performances are largely
dependent on the methods for estimation of noise components.
Furthermore, those improvements are realized at the expense
of CNR. CNR is also an important metric determining the
accuracy of medical diagnosis and is desired to be improved
in future work.

Fig. 4. B-mode images of string phantom (1) and anechoic cyst phantom
(2). Images are obtained with CF (a) and Wiener postfilter (b) both estimated
with MV beamforming. Images are shown with dynamic ranges of 80 dB.
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