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Abstract—Ultrasonic guided waves (UGW) propagated in the 

long cortical bone can be measured via axial transmission method. 

However, ultrasonic identification of long cortical bone is a multi-

parameter inverse problem and the optimal solution of the inverse 

problem often involves complex solving process. Deep neural 

network is essentially a multi-parameter powerful predictor based 

on universal approximation theorem. In the study, we investigate 

the feasibility of applying the multichannel crossed convolutional 

neural network (MCC-CNN) for simultaneous estimation of 

cortical thickness and bulk velocities. Finite-difference time-

domain method (FDTD) is used to obtain the simulated UGW 

signals. The results illustrated that the proposed method confirms 

the feasibility and accuracy, which could be helpful to the UGW 

based evaluation of long cortical bone. 
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I. INTRODUCTION 

Ultrasonic guided waves (UGW) theory has been applied to 
evaluate the quality of long cortical bone via so-called axial 
transmission method [1-9]. In most of the previous studies, the 
recorded temporal-spatial matrix signals were transformed to 
wavenumber-frequency (k-f) domain to quantify the UGW 
dispersive modal energy. To enhance the SNR and improve 
extraction of dispersion curves for low amplitude modes, some 
array signal processing algorithms, such as the Radon transform 
[1, 10] and SVD-based method [11, 12] were proposed. The 
SVD-based method has been combined with a sparse penalty, 
which successfully achieves a high resolution extraction for 
dispersion curves [13]. Recently, Xu et al. [14] proposed a 
dispersive Radon transform (DRT) which projects the temporal 
signals of dispersive waves on the space of parameters of interest 
for waveguide or media property estimation. 

After solving a model based inverse problem by minimizing 
the cost function defined as the difference between the extracted 

dispersion curves and theoretical dispersion trajectories, the 
physical parameters of long cortical bone, such as thickness [15-
20], porosity [15-17], bulk velocities [17], phase velocity [21], 
modulus [22], can be predicted. However, it is challenging to 
develop a robust and global optimized approach for such an 
intractable multi-parameter optimization problem [23]. 

Machine learning, especially deep learning, has recently 
shown significant performance improvement in diverse fields 
compared to traditional methods, such as natural image 
classification [24], speech recognition [25], computer gaming 
[26]. There has been an explosion of interest in the ultrasound 
community using classical machine learning methods or deep 
neural networks (DNNs) to replace traditional methods or 
procedures, especially in the field of ultrasound imaging but not 
limited to that. A support vector machine (SVM) was utilized to 
classify the demineralized bones [27]. The Generative 
Adversarial Network (GAN) was trained to form an end-to-end 
transformation that has been applied to reconstruct B-mode 
images from raw RF data and concurrently segment cyst from 
surrounding tissue [28]. The convolutional neural network 
(CNN) learned the compounding operation to produce high-
quality images [29]. The CNN was proposed for estimation of 
porous material parameters from synthetic ultrasound 
tomography data [30].  

Theoretically, DNN can approximate and fit any continuous 
functions, which could be used for parameters prediction. Due 
to the spatial correlation calculations of convolutional kernels 
with different sizes, the CNN based neural networks would have 
strong feature extraction abilities, which are very suitable for 
end-to-end self-learning processes. Unlike traditional machine 
learning methods that the input is features extracted from the 
original data rather than raw data, such as SVM, end-to-end 
means the input of CNN is the original data and the output is the 
final prediction, in which features of input can be self-learned. 
This study is aiming to introduce the CNN method to solve the 
inverse problem arisen from UGW based long cortical bone 
evaluation. Considering cortical thickness and bulk velocities 
are three key parameters for long cortical bone assessment, a 
combined determination is designed. Whereas, few studies in 
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UGW by means of deep learning have been reported. Such a 
challenge motivates the development of a deep learning method 
for combined estimation of the cortical thickness and bulk 
velocities. 

II. DATA COLLECTION AND METHODOLOY 

A. Simulation 

The long cortical bone was modeled as a 2-D isotropic free 
plate with homogenized elastic properties. Regarding the 
forward problem, the finite-difference time-domain method  
(FDTD) [7, 31, 32] was applied to simulate UGW datasets. As 
show in Fig.1, a single 1 MHz emitter and 20 receivers are 
aligned in axial direction for array signal acquisition. Perfectly 
matched layers (PML) are added to both sides of the model plate 
for absorbing the reflection. Theoretically, the simulation results 
are more accurate and more stable with smaller time and space 
steps when Courant–Friedrichs–Lewy (CFL) conditions are 
satisfied [31, 32]. 

 

Fig. 1. Simulation model setup 

B. Training, validation and test dataset 

The model parameters are listed in TABLE I. The training, 
validation and test datasets consist of 19840, 6262, 6262 
samples, respectively. In practice, the cortical physical 
parameters with some kind of correlation, such as the 
longitudinal and transverse bulk velocities, cannot be 

synchronously and uniformly linear distribution within the 
parameters ranges. For a fixed longitudinal bulk velocity, there 
may be a local range of transverse bulk velocities corresponding 
to it. Hence, the bulk velocities in training dataset are composed 
of two parts of samples to ensure that the trained network have 
a reasonable and practical prediction ability. In one part, the 
overall distributions of bulk velocities are uniform. In the other 
part, the distributions of bulk velocities are locally random. The 
local parameters ranges are shown in the four right-most 
columns of TABLE I. Meanwhile, the parameters of thickness 
are only uniformly distributed in the global range of interest. 

To mitigate the inverse crime and test the robustness of the 
network, the training and test dataset should not be produced 
with the same time and space steps, so the UGW signals in 
training dataset were simulated with relatively smaller FDTD 
temporal step and spatial scale than the settings of the validation 
and test dataset, further corrupted by additional Gaussian noises 
(SNR=10dB). 

C. Neural network architecture 

Fig.2 shows the architecture of the multichannel crossed 
convolutional neural network (MCC-CNN), which is composed 
of three crossed channels with a depth of 42 layers. Each channel 
contains 7 convolutional layers with varied kernel sizes for 
features extraction. The sizes of the convolutional kernels range 
from 1×1 to 12×20. The UGW time domain signals were 
sampled and combined into 20 channels pseudo images as input 
signals. The input image size of each channel is 34×56. The 
network was trained to minimize the mean-squared-error (MSE) 
losses between the true parameters and the neural network 
predictions utilizing the Adam optimization algorithm [33], with 
the initial learning rate of 0.001 over 6 epochs using mini-batch 
learning (mini-batch size = 32). 

TABLE I. MODEL PARAMETERS 

Variable 

Name 
Symbol 

Global Range 

Increment 
Local 

Range1a 

Local 

Range2a 

Local 

Range3a 

Local 

Range4a 
Minimum Maximum 

Bone 
Thickness 

Th 1.0 mm 4.0 mm 0.1 mm — — — — 

Longitudinal 

bulk velocity 
VL 3.37 mm/μs 4.20 mm/μs 0.01 mm/μs 

3.37 mm/μs -

3.57 mm/μs 

3.58 mm/μs 

-3.78 mm/μs 

3.79 mm/μs -

3.99 mm/μs 

4.00 mm/μs 

-4.20 mm/μs 

Transverse 

bulk velocity 
VT 1.34 mm/μs 2.17 mm/μs 0.01 mm/μs 

1.34 mm/μs -

1.54 mm/μs 

1.55 mm/μs 

-1.75 mm/μs 

1.76 mm/μs -

1.96 mm/μs 

1.97 mm/μs 

-2.17 mm/μs 

——There is no random distribution of thickness in local range. 
a In the other part, the distributions of bulk velocities are locally random. 

 
Fig. 2. Architecture of the multi-channel crossed convolutional neural network (MCC-CNN)  
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III. RESULTS 

As shown in Fig. 3, the joint prediction accuracy rates of 
three parameters within absolute error thresholds (EVL≤0.1 
mm/μs, EVT≤0.1 mm/μs, ETh≤0.1mm) are all above 90%. The 
accuracy rate of longitudinal bulk velocities, transverse bulk 
velocities, cortical thickness is 94.63%, 99.85%, 98.74%, 
respectively. The accuracy rate for longitudinal bulk velocities 
is relatively lower compared with the other two parameters on 
this occasion. The prediction accuracy rates is defined as: 

𝜂 =
∑ 𝑆𝐸{∙}

𝑖
𝑖

𝑁𝑎𝑙𝑙_𝑡𝑒𝑠𝑡

× 100%     𝑆𝐸{∙}

𝑖 = {
1  𝐸{∙} ≤ 0.1 

 0  𝑜𝑡ℎ𝑒𝑟𝑠       
 

where i is the serial number of samples in test dataset. 𝐸{∙} 

denotes absolute prediction error (EVL, EVT, ETh). 𝑁𝑎𝑙𝑙_𝑡𝑒𝑠𝑡  is the 

number of samples in test dataset. 

The mean percentage estimated error of longitudinal bulk 
velocities, transverse bulk velocities, cortical thickness is 2.35%, 
2.36% and 2.56%, respectively. The estimation root-mean-
square error (RMSE) of three parameters is 0.139. The estimated 
RMSE for each of them is 0.106 mm/μs, 0.047 mm/μs and 0.077 
mm, respectively.  

From the prediction results, it can be found that the MCC-
CNN has a good performance in terms of the prediction accuracy 
rates and mean relative errors. The designed MCC-CNN is 
robust for the test dataset. 

 

 

 

Fig.3. Estimated results. (a) Longitudinal bulk velocity. (b) Transverse bulk 
velocity. (c) Cortical bone thickness. Blue dashed lines are associated with 
RMSE. 

IV. DISCUSSION 

Cortical thickness and bulk velocities (longitudinal and 
transverse) are important parameters to characterize the quality 
of long cortical bone. Single parameter estimation cannot fully 
evaluate the cortical situation. A simultaneous estimation of 
three parameters for cortical samples in the study would be a 
relatively comprehensive evaluation of long cortical bone. 

Inspired by previous studies[17, 30], an MCC-CNN network 
was designed to solve the complicated optimization problem for 
estimating the long cortical bone material parameters using the 
UGW signals domain. Once trained, the mapping is constructed 
between the UGW signals domain and the long cortical bone 
material parameters domain in virtue of features extracted via 
multiscale convolutional kernels in different channels. Different 
from the multi-parameter estimation in most of previous studies, 
the proposed technique avoids to directly solve the tough multi-
parameter optimization problem. The results indicate that the 
parameters of long cortical bone can be estimated 
simultaneously with faithful accuracy at the SNR of 10dB. 

It should be mentioned that other networks including famous 
pretrained network, for instance, LSTM, AlexNet, GoogleNet, 
can also be applied to solve the optimization problem involved 
in present study. The trade-off is that the more complicated 
network is chosen, the higher the training computation time is 
consumed. Meanwhile, the complicate design of the loss-
function between true values and predictions will also bring 
other challenges, such as network convergence efficiency and 
more hyperparametric adjustments. As a perspective for the 
future work, robustness and generalization of the proposed 
technique should be verified by in vitro and in vivo experiments. 

V. CONCLUSION 

In this study, a parameters estimation method based on deep 
learning was proposed to solve intractable optimization problem 
for long cortical bone identification. The analysis of the results 
suggested that the MCC-CNN method using the UGW has 
potential to improve the long cortical bone evaluation, which 
may become a significant advantage when trying to characterize 
long cortical bone by solving model-based inverse problems. In 
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future work, the proposed method should be further verified by 
in vitro and in vivo datasets. 
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