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Abstract—Recently, the interest in haptic feedback is growing
thanks to its ability to enhance the interaction with Human
Machine Interfaces (HMIs). This research project is exploring
the potential of machine learning combined with piezoelectric
actuators to generate localized vibrational feedback over a thin
rigid surface. With this goal in mind, this paper studied the
potential of neural networks and machine learning algorithms to
extract the position, where an impact has occurred. A data-set
with 5310 stress signals labeled with the position at which the
impact has occurred, was obtained using an automated Linear
Impact Generator (LIG). Each signal was transformed into a
spectrogram using the Fast Fourier Transform. During the study,
different neural networks and machine learning algorithms were
implemented and a supervised training process was carried out.
At the end of the paper, the results of the different models are
compared. The best model has an error (Validation MAE) of 4%
and (Test MAE) of 8% in the impact position detection over an
aluminum thin plate.

Index Terms—Impact Position Detection, Surface Haptics,
Piezoelectric Transducers, Machine Learning, Neural Networks.

I. INTRODUCTION

In recent years, haptic feedback is gaining popularity since it
can enrich the interaction with touch screens and other Human
Machine Interfaces (HMIs). Moreover, haptics can enhance
the usability of HMIs under extreme light/noise conditions
where the traditionally used feedback methods (i.e. visual and
auditive stimuli) are not available or are not as performant.

Preceding studies on the interaction of humans with acoustic
musical instruments have shown that musicians perceive a rich
haptic (i.e. Vibro-tactile) exchange with their instruments. This
action-perception loop, not only influences the perceived qual-
ity of the instrument but, enhances the performance control
(e.g. better timing or pitch control) while playing [1].

In the same context, Digital Musical Instruments (DMIs)
commonly make use of touch screens as an interaction method,
however, they generally lack haptic feedback. This is why
restoring a proper haptic exchange between the DMI and
the performer will dramatically improve the user experience.
Furthermore, haptic enabled DMIs could give access to human
beings with visual or hearing limitation to create music, by
allowing them to feel the music.

Several approaches have been followed to create haptic
feedback in tactile surfaces. For example, Time reversal
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method (TRM) has been studied in [4], [3], and [2] to focalize
flexural waves in thin plates or cavities. Besides, in [8] TRM
has also been used to detect the position were a finger impacts
the surface. Alternatively, in [5] an array of 248 piezoelectric
actuators was used to render localized haptic feedback within
the area occupied by each transducer.

This research project is exploring the potential of machine
learning and piezoelectric actuators to create converging elastic
waves over a rigid surface, thus, obtaining multi-point and
localized vibrational feedback.

Machine learning, specifically deep learning, has demon-
strated promising results in the field of signal processing, even
outperforming the classic signal processing methods [6]. In
[7], the authors used data from finite element analysis (FEA)
simulations and Artificial Neural Networks (ANN) to detect
the position where an impact has occurred in the wing of an
airplane that is made up with composite materials.

This paper continues to study the potential of neural net-
works and other machine learning algorithms for signal pro-
cessing. In particular, a first approach to understand the ability
of existing neural networks and machine learning algorithms
to extract different features from the stress signals that can
be measured at one or several locations of a thin rigid plate,
after an impact occurs. Such signals are acquired by a single
piezoelectric transducer bonded to a tactile surface (e.g. a
beam of aluminum). Section II describes the procedure to
acquire the signals and create the dataset. Then, section III
presents the prior data analysis to identify the distribution
of the data. Finally, section IV illustrates the training of the
models that were trained and the different results.

II. DATA ACQUISITION

To obtain the training dataset an automated linear impact
generator (LIG) was used. An impact is induced in different
positions over the surface of an aluminum beam, after each
impact, flexural waves propagate on the surface diverging
from the contact point, piezo-patches are used to convert the
mechanical signal into an electric signal, the voltage across
the electrodes of the piezoceramic patch is acquired using an
oscilloscope.
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A. Automated Linear Impact Generator

In [9] the development of a fully automated linear impact
generator is described. A custom made electromagnetic linear
actuator is mounted on a CNC table and an automation
software was developed to consistently repeat the impact
within an area of interest. The acquisition process is as follows:
First, a matrix of impact positions is defined. Then, the LIG
is moved to the first position on the surface that is being
studied. Later on, the LIG induces a single impact and one
or multiple piezoelectric patches and an acquisition system
(in this case a LeCroy Waverunner LT224 oscilloscope) are
used to record the voltage signals. The acquisition is repeated a
defined number of times at the same position and then the LIG
is moved to the next point. The complete system is presented
in fig. 1
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Fig. 1. Side view of the automated acquisition system that records the elastic
waves in a fixed position of an aluminum beam after an impact is generated
in multiple locations [9]

B. Acquisition Methodology

For this particular study, an aluminum beam of 250 mm x
16 mm x 2 mm (Length, Width, Thickness) as shown in fig.
2 was mounted on a CNC table using double-sided tape, a
single piezoelectric transducer, located 62.5 mm far from the
left border of the beam was used to acquire the signals. The
study started at position X = 63 mm and finished at position
X = 240 mm, since an impact was generated every 1 mm, 177
unique positions were studied. At every position, thirty (30)
samples (i.e. single impact repetitions) where acquired. As a
consequence, 5310 impacts were acquired in total. Note that
for this experiment the Y position is kept constant during the
whole study (Y = 8 mm is the midpoint of the beam).
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Fig. 2. An aluminum beam is mounted on the Stepcraft 600 CNC table using
double sided tape. A piezoelectric patch is stuck under the beam at position
x = 62.5 mm, and the study region goes from x = 63 mm and goes until 240
mm

For training purposes, (see section IV), the whole acquisi-
tion was divided into 5 different data-sets, each of them with
a separation of 5 mm between consecutive impact positions.
The conditions for the acquired datasets where as follows:

• Data-set # 1: Starting at X = 63 mm with steps of 5 mm
until X = 238 mm (e.g. X = 63, X = 68, ... X = 238).

• Data-set # 2: Starting at X = 64 mm with steps of 5 mm
until X = 239 mm (e.g. X = 64, X = 69, ... X = 239).

• Data-set # 3: Starting at X = 65 mm with steps of 5 mm
until X = 240 mm (e.g. X = 65, X = 70, ... X = 240).

• Data-set # 4: Starting at X = 66 mm with steps of 5 mm
until X = 236 mm (e.g. X = 66, X = 71, ... X = 236).

• Data-set # 5: Starting at X = 67 mm with steps of 5 mm
until X = 236 mm (e.g. X = 67, X = 72, ... X = 237).

An example of the acquired signal is presented in fig. 3. To
synchronize all the acquisitions of the dataset, the triggering
signal of the LIG (i.e. a signal that triggers a single impact)
was also acquired, this signal also triggers the acquisition on
the oscilloscope.

Fig. 3. Single acquisition after an impact was generated in the position X =
63 mm, the triggering signal starts the single impact
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After every impact, the acquired voltage signals are trans-
ferred and stored in a computer for post-processing. The Fast
Fourier Transform FFT function in Matlab is used to generate
a spectrogram. A window of 256 points, an overlap of 64
points, a fast Fourier transform window of 256 points, and
a sampling frequency of 50 kHz are defined. As a result, a
matrix with 128 x 234 ”pixels” or data points is obtained. An
example of graphic representation is displayed in fig. 4.

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Fig. 4. A spectrogram is generated using the Fast Fourier Transform FFT
function in Matlab, a window of 256 points is defined, with an overlap of
64 Points, an FFT window of 256 points, and the sampling frequency at the
moment of the acquisition was 50 kHz

This matrix is reshaped into a single column vector with
dimension 29952. After all acquisitions are done, a dataset
is created by appending, side by side, all the spectrogram
vectors and including a label with the position where the
impact was generated and the number of the sample (e.g.
”acquisitionX63mm Y8mm sample 1”).

III. DATA ANALYSIS

Prior to training the neural networks and machine learning
algorithms, the data was analyzed with the Principal Com-
ponent Analysis (PCA) method, this statistical model allows
to transform the data into a lower-dimensional version of
the original data, the final set of orthogonal components
(i.e. vectors) is a linear combination of the original data
[10]. In other words, one can use PCA to find a lower-
dimensional representation of the data, by scarifying precision,
to understand the separability of the data and to obtain an
intuitive visualization of the data distribution.

Scikit-learn python module [12], which implements the
randomized truncated singular value decomposition (SVD)
method by Halko et al. [11], is used to obtain the PCA in
2D and 3D (i.e. transformation to 2 and 3 main components).
The results for PCA 3 show a promising data separation where
the 30 samples at each point seem to agglomerate in a specific
region presenting a high chance of obtaining classification or
regression models, the results are presented in fig. 5.
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Fig. 5. PCA 3 for Dataset #1. Graphic representation of the reduction to the 3
principal vectors (i.e orthogonal components with the highest variance), each
set of acquisitions at a specific position is represented by one unique color

IV. MODELS TRAINING AND RESULTS

The impact position detection task was considered as a
regression problem. In this manner, it is possible to obtain
a continuous prediction of the impact position that allows the
model to generalize. In other words, to detect the location of
the impact even if input data comes from other positions that
were not observed by the model during the training stage.

A. Data Preparation

Three data-sets (Data-set # 1, # 2, and # 3) were merged
together, then, this data is randomly divided into 2 groups,
80% is used for training and 20 % is used for validation after
each iteration of the learning process. Finally, the data-set #
4 and # 5 are used for testing the trained models, note that
these two sets of data contain positions that have never been
observed by the models.

B. ML Models and Neural Networks

Initially, two machine learning algorithms are fitted to
predict the impact position, the linear regression model from
Scikit-learn [12] and the XGB-Regressor from the XGBoost
python module that is an implementation of the gradient
boosted decision trees [13].

Later, the TensorFlow library [14] was used to implement
two neural network models. First, a Recurrent Neural Network
(RNN) [10] was implemented. This RNN has 4 hidden layers
with ReLU activation, batch normalization and Gaussian noise
(to improve the generalization). The output layer of the RNN
has a linear activation function to help the model to behave
as a regression. Second, a 2D Convolutional Neural Network
(CNN) was implemented. The CNN has four convolutional
layers, the first two layers with a depth of 32 and the second 2
layers have a depth of 64. These layers, have ReLU activation,
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MaxPooling to reduce the dimension of the input and a dropout
of 0.5 that helps to improve the generalization of the model.
The output of the convolutional layers is flattened and passed
to a fully connected NN with one hidden layer with ReLU
activation and an output layer with linear activation.

Both models use the mean absolute error (MAE) as the loss
function and the Adam optimizer [15] was used instead of the
classical stochastic gradient descent procedure to update the
network weights based on training data. Last but not least, for
the training of the networks a high learning rate (Lr = 0.001)
was used during 100 epochs to help reduce the error, then
a lower learning rate (Lr = 0.00001) was used through 900
epochs.

C. Results and Discussion

Table I presents the results obtained for the four models
during the training (using the validation set of data) and during
the test of the models (using the test data-sets # 4 and # 5).
All the error values come from the MAE and the percentage
of error is calculated considering the length of the working
area 177 mm.

TABLE I

Error LinearReg XGBoost NN CNN 2D
Validation 19.5 / 11.2% 7.6 / 4.3% 14.9 / 8.4% 8.1 / 4.6%
Test # 4 22.2 / 12.6% 12.4 / 7.0% 21.6 / 12.2% 15.7 / 8.9%
Test # 5 31.7 / 17.9% 20.4 / 11.5% 26.9 / 15.2% 14.8 / 8.4%

The best models are the XGRegressor and the 2D CNN. The
XGRegressor has the best results for the particular training
dataset (merge of data #1, #2, and #3) but it does not have
a good generalization when evaluated in the test data (Data
# 4and # 5) that contain un-seen data points (i.e. contain
a different population distribution). Similarly, the 2D CNN
presents good results for the training data, however, it also
presents coherent values for both test data-sets, which means
that it generalizes in a precise manner. It is important to
highlight that the 2D CNN presented an average MAE of 13
mm while the average validation MAE was 8 mm, this shows
that the model still needs more exploitation and deepening.
The fact that the training error continues above the validation
error, means that the model needs more data to reduce the
error while maintaining a high generalization.

V. CONCLUSIONS

In general terms, it was expected that the 2D CNN presents
better results, as its approach uses kernels to find the 2D
relationships of data. Owing to the fact that the signals are
all synchronized it is possible for the network to find the
relations between frequency and time for each spectrogram.
It makes sense to continue studying this approach with more
data (e.g. different materials, additional positions, among other
variations). In addition, future studies should consider other
neural networks with deeper architectures.

The obtained results will be extended to the extraction of
the 2 dimensional (2D) position of the impact. Then, the
analysis of impact signals acquired from multiple piezoelectric
transducers. Finally, further analysis will be carried out in
different materials to study the generality of the obtained
models.

In conclusion, this study helps to understand the behavior
and performance of machine learning for impact position
detection in the particular domains that will be used for haptic
feedback (i.e. thin rigid plates). Also, provide an alternative
method for detecting the position of the finger in the tactile
surface of the DMI.
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