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Abstract—Ultrasound localization microscopy (ULM) exploits
microbubbles to generate super-resolution images beyond the
diffraction limit, and ultrasound speckle tracking (UST) allows
for the estimation of tissue motion and strain. For both ap-
plications, suppression of noise and clutter is essential. This is
effectively achieved using blind source separation techniques such
as singular value decomposition, but given the limitations of
heuristic subspace selection, useful criteria that enable automatic
and adaptive selection of the desired signal components should
be established. In this work, synthetic ultrasound data was used
to test a comprehensive range of (proposed and novel) effective
criteria based on domain knowledge for adaptive signal subspace
selection for ULM and UST. For ULM, tissue clutter is most
effectively suppressed by removing singular components with a
mean spectral density above a frequency threshold. Also for UST,
identification of signal singular components by spectral threshold-
ing proved to be the most effective. Even though its performance
for in-vivo acquisitions remains to be investigated, the proposed
method shows promise for adaptive clutter suppression.

Index Terms—Blind Source Separation, Singular Value De-
composition, Ultrasound Localization Microscopy, Ultrasound
Speckle Tracking

I. INTRODUCTION

Ultrasound localization microscopy (ULM) and ultrasound
speckle tracking (UST) are examples of advanced ultrasound
(US) imaging applications. More specifically, ULM is used
to generate super-resolution images, that is, images in which
microbubbles (i.e., US contrast agents) are localized with a
precision beyond the diffraction limit [1], [2]. This technique,
inspired by optical super-localization techniques [3], is espe-
cially useful to map vascular architectures. UST, on the other
hand, makes use of the inherent speckle patterns found in US
imaging to track global and local tissue motion. UST has a
well-established echocardiographic application [4], [5], but can
also be applied for vector flow imaging [6] or quantitative
assessment of uterine motion outside pregnancy [7].

Data preprocessing is essential to the application this type
of algorithms, since their outcomes for a great part rely on the
quality of the input US data. The suppression of clutter and
noise is a significant part of this pipeline. The removal of these

undesired signals is traditionally carried out using temporal
and spatial filtering [8], [9], mostly through (in)finite response
filters. However, these can only be effectively applied when
clutter and noise are found in different spectral bands than
the desired signal [10]–[12]. When this criterion is not met,
the filtering technique might remove useful information or fail
to suppress artefacts in the signal, and consequently hamper
robust and effective the application of the aforementioned US
techniques.

Recently, blind source separation (BSS) filtering has been
introduced to ultrasound imaging [10]–[12], such as singu-
lar value decomposition (SVD) and independent component
analysis. The advantage of BSS techniques is that they allow
adaptive decomposition of the ultrasound signal into compo-
nents with specific spatiotemporal behaviour rather than into
specific (spatial) frequency bands. Even clutter and noise that
spectrally overlap the desired signal can therefore be removed
from the imaging. Central to BSS filtering is the identification
of components that contain clutter or noise, or alternatively,
that contain the desired signal. Although heuristic or empirical
thresholds on the number of components to be included have
been widely used [13]–[17], there is a demand for an adaptive,
generalizable method for the identification of the desired signal
components [10], [17], [18].

Adaptive BSS filtering for Doppler imaging of blood flow
has extensively been studied [10], [12], [17], [18]; however,
for ULM and UST the methods are still scarce. In this
work, we evaluate a series of subspace selection methods
for their effectiveness for ULM and UST, respectively. More
specifically, we studied SVD filtering on a contrast-enhanced
US cine-loop and an echocardiographic US video that were
generated in silico and subsequently contaminated with known
clutter and noise artefacts, so that a reliable ground truth was
available.

Program Digest, 2019 IEEE International Ultrasonics Symposium (IUS)
Glasgow, Scotland, October 6-9, 2019

978-1-7281-4595-2/19/$31.00 ©2019 IEEE WeJ5.1



II. MATERIALS AND METHODS

A. Singular value decomposition filtering

SVD is a BSS technique that infers the decomposition
from the signal itself by maximizing autocovariance [19].
Mathematically, SVD of a data matrix X, in which all spatial
locations are located along the rows and the temporal dimen-
sion is represented as columns, can be described as [20]

X = UΣVT , (1)

where U and V represent the spatial and temporal singular
vectors, respectively, and Σ contains the singular values along
its diagonal. Through multiplication of the kth column of U
with the kth singular value and the kth row of V, individual
singular components can be constructed. A filtered image is
eventually created by taking the sum of all desired singular
components.

In this work, we test a comprehensive range of (proposed
and novel) effective criteria based on domain knowledge
for adaptive signal subspace selection. More specifically, the
strategies to identify the components that contain the desired
signal are based on information theory, noise modelling, spar-
sity, or spectral and spatial characteristics. Noise modelling
and information theoretic criteria are mostly universal, based
on e.g. the minimum description length [21] or Marc̆enko-
Pastur modelling of noisy singular values [22].

For ULM specifically, we assume that tissue movement is
slower and much more spatially coherent than blood motion
[10], [18], [23]. We use domain knowledge to establish thresh-
olds for the required spatial or temporal characteristics, i.e., a
mean power spectral density of >10 Hz and spatial spectral
density of >3.3 mm-1. In addition, we select components based
on their sparsity (as quantified through the normalized kurtosis
as defined in [24]) or identify the signal regime by locating
two “turning points” in the singular domain separating it from
clutter and noise [18].

On the other hand, the UST movie is filtered such that the
deterministic speckles patterns originating from anatomical
structures are left unaltered while reducing the noise and
clutter. For this, we define that the majority of the power
spectral density should be between 0.5 and 1.5 Hz and the
mean spatial spectral density above 0.1 mm-1. Moreover,
we also select components that exhibit strong periodicity
(as quantified by the height of a non-zero-lag peak in the
normalized autocorrelation trace).

B. Ultrasound localization microscopy

The simulated contrast-enhanced US video was generated by
simulating the propagation of 26 microbubbles along a vascu-
lar network. Their backscattering coefficients were randomly
generated and their speed was ∼2 mm/s, typical for the blood
velocity in a 5th generation microvascular vessel [25]. The
clutter signal of tissue was constructed by randomly locating
500 scatters in the imaging domain that moved together at
a speed of 0.2 mm/s, imaged in the same fashion as the

Fig. 1: Maximum-intensity projection and the corresponding
super-resolved image of the (a) unfiltered data, (b) filtered
data through spectral subspace selection, and (c) filtered data
through component selection using a sparsity threshold.

microbubbles. Imaging was subsequently modelled by a scatter
point-spread function of ∼0.15 mm, modulated at 7-MHz.
Finally, the simulation was generated with a frame rate of
400 Hz.

To evaluate the effectiveness of the proposed filtering, we
implemented a standard ULM approach based on the localiza-
tion of Gaussian point-spread function centroids [2]. As the
performance is related to the ability to minimize the number
of localizations outside the actual vasculature as well as the
number of pixels inside the vessel that were not localized, we
introduce the F1-score as measure of filtering performance.
This score is defined as

F1 =
2TL

2TL + 2FL + ML
, (2)

where TL, FL, and ML depict the number of true, false,
and missed localizations.

C. Ultrasound speckle tracking

The in-silico construction of a synthetic phased-array
echocardiographic video was based on a 3D finite-element
model of a heart that was built to simulate the mechanical
behaviour of the human heart during a cardiac cycle [26]. Ex-
ploiting the nodes in the finite-element model as US scatterers,
a 2D four-chamber-view US recording was formed by a series
of 161 diverging scan lines with an interline distance of 0.6◦.
Each line was generated by summing all scatterer contributions
approximated by a four-cycle 2.5-MHz-modulated Fraunhofer-
distributed pressure field. Clutter sources and Gaussian-
distributed white noise were introduced in the RF date before
demodulating the scan lines that made up the eventual 54-Hz
3-cycle heart video.
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Fig. 2: Diastolic and systolic frame in the (a) unfiltered
data, (b) filtered data through spectral subspace selection, and
(c) filtered data through component selection based on noise
modelling.

A pyramidal Lucas-Kanade optical flow method [27] was
used for the frame-to-frame tracking of a specific speckle that
could be directly associated with a finite-element node in the
original cardiac model. This way, the motion (i.e., Euclidean
distance from the scatterer or speckle to the initial position)
as assessed by tracking was compared to the actual motion of
the scatterer. Out-of-plane movement that relates to rotation
and motion of the heart in the chest cavity was thus taken into
account.

III. RESULTS

A. Ultrasound localization microscopy

For SVD filtering of contrast-enhanced US imaging, we
found that ULM reached the highest performance by spectral,
turning-point, and sparsity-based criteria, with F1-scores
of 0.76, 0.73 and 0.72, respectively. No filtering or simple
spectral filtering (also >10 Hz) yielded F1-scores of 0.19 and
0.50. In Figure 1, the filtered images and corresponding ULM
images are depicted.

B. Ultrasound speckle tracking

SVD filtering for UST in echocardiography performed
best using noise modelling (i.e., a cumulative singular
value threshold of 90%) and a spectral threshold. For
these two criteria, the highest correlation coefficient
(Pearson r = 0.71±0.07) and the lowest mean squared
error (0.00048±0.00032 mm2) were found with reference
to the ground truth movement. UST based on unfiltered
data reached a Pearson r and mean squared error of only
0.64±0.06 and 0.13±0.1 mm2, respectively.

IV. DISCUSSION AND CONCLUSION

Although BSS allows for adaptive filtering, subspace selec-
tion is still mostly carried out heuristically or empirically in US
imaging. In this work, we have compared different strategies
to identify those singular components containing signal and
those containing noise or clutter. As signal quality may differ
substantially between acquisitions [10], [18], a well-tailored
adaptive subspace selection strategy would make BSS filtering
more robust. We found that assessment of the spectral content
of each component is in general the best way to select the
appropriate signal components for both ULM and UST.

It must be emphasized that there is an intrinsic difference
between spectral SVD filtering and standard temporal (in)finite
response filters, since SVD is able to separate signal and
noise information with a similar frequency content exploiting
the statistical independence or orthogonality of the image
“sources”.

A limitation of BSS filtering techniques entails the required
computational complexity, especially with 3D or high-frame-
rate acquisitions. This could partly be dealt with by using a
block-wise [17] or randomized SVD [28]. To further boost per-
formance, integration of sparse basis selection [29] and robust
principal component can be considered [30], [31], in which
low-rank and sparse components are iteratively separated.

Even though its performance for in-vivo acquisitions re-
mains to be investigated, the proposed methods show promise
for adaptive clutter suppression. Future research should also be
directed towards the nature of the threshold, that is, whether
singular components could als be weighted or whether only
consecutive singular components should be included. More-
over, the use of adaptive threshold definitions that change over
time or with e.g. the cardiac cycle could be considered.
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