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Abstract—The diagnosis of prostate cancer (PCa) is still based
on systematic biopsy, but is increasingly developing towards an
imaging-driven approach. In particular, multiparametric mag-
netic resonance imaging (MRI) is receiving increasing atten-
tion over the last few years. In light of MRI-related issues
concerning costs, practicality, and availability, we investigate
a multiparametric ultrasound (mpUS) approach. We propose
and test a machine-learning-based strategy that automatically
combines B-mode ultrasound, shear-wave elastography (SWE),
and dynamic contrast-enhanced ultrasound (DCE-US) features.
To this end, automatic zonal segmentation by deep learning,
model-based feature estimation (related to contrast-agent perfu-
sion and dispersion), radiomic feature extraction, and a random-
forest-based pixel-wise classification were combined. The method
was trained and validated against histopathologically-confirmed
benign and malignant regions of interest in 48 PCa patients,
in a leave-one-patient-out cross-correlation fashion. The mpUS
classification algorithm yielded a region-wise area under the
Receiver Operating Characteristics (ROC) curve of 0.75 and 0.90
for PCa and significant (i.e., Gleason >4+3) PCa, respectively. In
comparison, the best-performing single parameter (i.e., DCE-US-
based contrast velocity) reached a performance of 0.69 and 0.76
in terms of the ROC curve area. In particular the combination
of perfusion-, dispersion-, and elasticity-related features were
favored in the classification. Even though validation on a larger
patient group is required, we have demonstrated the technical
feasibility of automatic mpUS for PCa localization. Further
development of mpUS might lead to a valuable clinical option
for robust, ultrasound-driven PCa diagnosis.

Index Terms—Machine Learning, Prostate Cancer, Multipara-
metric Ultrasound, Shear-Wave Elastography, Dynamic Contrast-
Enhanced Ultrasound

I. INTRODUCTION

Prostate cancer (PCa), the most prevalent non-skin malig-
nancy among American and European men [1], [2], currently
relies strongly on blood tests, rectal examination, and system-
atic biopsy [3]. The complications and risks of in particular
the latter procedure [4], [5] have led to wide-carried research
into an image-driven diagnostic strategy. In recent years,
magnetic resonance imaging (MRI) has shown promise for
the localization of PCa (and therefore as guidance for image-
based targeted biopsy) when performed in a multiparametric
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fashion [6], [7]. As such, imaging is now being integrated in
the guidelines of the PCa diagnostic pathway. Nevertheless,
MRI has important drawbacks in terms of costs, bed-side
practicality, and availability. Moreover, the cognitive radiologic
scoring systems used for multiparametric combination exhibit
steep learning curves and known disconcordance between
operators [8].

In this work, we study the potential of a multiparamet-
ric ultrasound (mpUS) approach. Ultrasound modalities such
as shear-wave elastography (SWE) and dynamic contrast-
enhanced ultrasound (DCE-US) (with quantification software)
have been introduced for PCa imaging with encouraging
results and there are indications that their combination might
improve the overall PCa localization performance [9]-[11]. In
fact, SWE assesses the tissue stiffness [12], whereas DCE-US
reflects the vascular characteristics [13], [14], which are com-
plementary features. Moreover, in contrast to a scoring system,
we examine the use of radiomics [!5] and machine learning
[16] to extract useful, complementary mpUS information for
PCa imaging.

II. MATERIALS AND METHODS

A. Data acquisition

An mpUS procedure (i.e., consisting of greyscale ultra-
sound, SWE and 2-minute DCE-US with 2.4 mL SonoVue®
(Bracco, Milan, Italy) contrast agents) was performed in
48 patients that were referred for radical prostatectomy. All
acquisitions were carried out at the Martini Clinic Prostate
Cancer Centre (University Hospital Hamburg Eppendorf, Ger-
many) with an Aixplorer® ultrasound scanner (SuperSonic
Imagine, Aix-en-Provence, France) and an SE12-3 endocavity
probe. For each prostate, two-dimensional mpUS imaging
was performed at the base, mid and apex sections of the
gland. A clinical trial protocol paper (NCT03091231) has been
published on the procedure [17].

After surgery, the resected prostate was histopathologically
examined [ 18], digitally reconstructed [19], and subsequently
mapped to the imaging [20]. Aware of registration errors,
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Fig. 1: Schematic overview of the classifier architecture, featuring B-mode ultrasound, shear-wave elastography, and contrast-
enhanced ultrasound, subsequent model-based feature and radiomics extraction, and random-forest classification.

regions of interest were drawn in benign, insignificantly-
malignant (i.e., Gleason 3+3), moderately-malignant (i.e.
Gleason 3+4), and significantly-malignant (i.e., Gleason
>4+3) regions.

B. Classification algorithm architecture

The general outline of the classification algorithm architec-
ture is illustrated in Fig. 1. For each modality, the prostate
was automatically located and zonally segmented [21]. The
outer contours were subsequently used to register the images.
Calcifications were localized and excluded in the further
classification pipeline. Twelve different contrast-ultrasound
dispersion features were extracted from the DCE-US cine-
loop [22]-[25], including contrast velocity, dispersion, and
wash-in time. Together with the Young’s modulus estimated
by SWE and the greyscale echogenicity values, these features
were used for radiomic extraction. The relative value to the
image median, the multiscale entropy, and the variance in a
~2-mm kernel were used as radiomic parameters reflecting
heterogeneity and asymmetry.

Machine learning was implemented as a random-forest
classifier with all radiomic features serving as input variables.
In total, the forest consisted of 1,000 trees that were each
trained on a small subset of the training samples. We enforced
generalizability by limiting the tree size and randomly
excluding a said amount of prostates for the training of
each tree. Moreover, we grew two distinct sets of forests
for the two prostate zones, which typically show different
characteristics in imaging [!4], [26]. The final pixelwise
multiparametric maps, which reflected the forest agreement
on PCa classification, were postprocessed with a ~2.5-mm
median filter.

C. Validation methodology

A leave-one-out strategy was adopted for cross-validation,
allowing us to calculate the overall Receiver Operating
Characteristic curve areas (ROC-AUC) of the multiparametric
score in a region-of-interest-wise fashion. For statistical
validation, we used a Wilcoxon rank sum test with p-value
thresholds of <0.05 (*) and <0.005 (**) to depict statistical
significance.

III. RESULTS

The multiparametric approach outperformed the single-
parametric outcomes of SWE as well as DCE-US. Whereas
the contrast velocity, the best performing DCE-US parameter,
yielded an ROC-AUC of 0.69 and 0.76 for PCa and significant
PCa versus benign regions, and SWE only reached 0.62 and
0.73, mpUS resulted in ROC-AUCs of 0.75 and 0.90. As
depicted in Fig. 2, the multiparametric score also shows some
correlation with cancer aggressiveness.

IV. DISCUSSION AND CONCLUSION

The multiparametric radiomic machine-learning approach
for mpUS as presented in this work was shown to outper-
form single-parametric PCa imaging. This improvement is
likely a shared contribution of the use of radiomics and the
multiparametric strategy, combining complementary features.
These results are in line with research in multiparametric MRI
[6], earlier work on multiparametric combination of DCE-US
features [27], and mpUS based on cognitive scoring [28].

Moreover, it was shown that the mpUS multiparametric
scores also reflected cancer aggressiveness. It should be
stressed that clinically insignificant PCa has been defined in
multiple ways in the literature [29], [30]; we therefore distin-
guish insignificant, moderate, and significant cancer to fully
examine the ability of mpUS to distinguish aggressiveness.
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Fig. 2: Multiparametric score distribution over benign and
malignant regions of interest of increasing PCa grade (i.e.,
insignificant: Gleason 3+3, moderate: Gleason 3+4, significant:
>443).

Remarkably, insignificant PCa is generally considered more
suspicious in terms of mpUS score than moderate PCa. This
may reslut from the fact that only patients with very large
insignificant tumours are selected for surgery whereas the
greater part of insignificant PCa patients (who received less
radical treatment) could not be included in the study due to
absence of whole-gland pathology.

Limitations of this study reside in the dataset size and the
single-centre set-up of the study. In order to have radical
prostatectomy specimens as a ground truth, we could not
include patients without PCa, which might have biased the
presented performances. In the future, a full range of intensity-
based, morphological, texture-based, and statistics-based fea-
tures could be considered [31], [32] as well as other new
model-based parameters such as SWE viscoelasticity [33] and
contrast-agent entropy [34].

Nevertheless, this work clearly demonstrates the technical
feasibility of an mpUS approach based on radiomics and
machine learning. We believe that further research in an
extended dataset, possibly in three dimensions [35]-[37],
might allow further clinical implementation in the future.
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