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ABSTRACT

This paper studies the interest of using harmonic ultrasound (US)
images in the process of tissue reflectivity function restoration from
RF data. To this end, two direct models (one for fundamental and
another for harmonique images) derived from the equation of US
wave propagation are proposed. In particular, an axially varying at-
tenuation matrix is used within the harmonic image model in order
to account for the attenuation of harmonic echoes. Based on these
two image formation models, a joint deconvolution problem is in-
vestigated. The solution of this problem is obtained by minimizing
a cost function composed of two data fidelity terms representing the
linear and non-linear model components,regularized by an `1-norm
regularization. The tissue reflectivity function minimizing this func-
tion is finally determined using an alternating direction method of
multipliers. The performance of the proposed algorithm is quanti-
tatively and qualitatively evaluated on synthetic data, and compared
with a classical restoration method used for US images.

Index Terms— ultrasound imaging, harmonic ultrasound imag-
ing, optimization, ADMM, joint deconvolution, image restoration.

1. INTRODUCTION

Among all medical imaging modalities, ultrasound (US) imaging is
still the most used in clinics due to its effectiveness, non-ionizing and
low cost characteristics [1]. It serves for clinical diagnosis, mainly
for soft tissues such as cardiovascular applications, various cancer
blood flow velocity assessment and obstetrics. US imaging refers to
a pulse-echo technique where a brightness mode, called B-mode, is
used to visualize the tissues. A short pulse with central frequency
f0 is emitted by a transducer generating a US wave transmitted into
the medium, reflected back to the probe by the scatterers. Radiofre-
quency (RF) signals are then produced by the echoes returning to the
transducer. These raw RF signals are filtered around f0, beamformed
to generate RF lines and further juxtaposed, demodulated and log-
compressed to form the fundamental B-mode image. US waves may
interact non linearly with the medium during propagation causing
distortion of the transmitted wave. This distortion introduces har-
monic components into the spectrum of the received signals. There-
fore, the received RF signals can be filtered around the harmonic
components in order to obtain the so-called harmonic US images.
For blood perfusion measurements and lesion characterization appli-
cations, contrast agents are injected to generate strong nonlinearities.
However, existing studies showed that certain tissues can cause dis-
tortions without the need for contrast agents, enabling the so called
tissue harmonic imaging (THI) [2]. Due to the limited bandwidth of
the transducers, the study of US image harmonics is usually limited
to the first component at 2f0. Several methods have been proposed to
give access to both fundamental and harmonic images such as pulse

inversion [3], system identification [4] and filtering techniques in the
case of low overlap between fundamental and harmonic spectra (see
Fig. 1 for an illustrative example).

THI has several advantages over fundamental US imaging, such

Fig. 1. Illustration of fundamental and harmonic images computed by linear
filtering from the native RF image.

as better spatial resolution, improved contrast to noise ratio and re-
duced near field artifacts. However, the high attenuation with imag-
ing depth is an important drawback. In US imaging, several attempts
were proposed to increase the resolution and the contrast of the im-
ages by improving the beamformer, or restoring the tissue reflectiv-
ity function (TRF) by introducing appropriate post-processings on
RF data (e.g., [5,6]), which is the main objective of this work. More
specifically, this paper accounts for harmonic US imaging in the pro-
cess of TRF restoration, in addition to fundamental RF data.
The remainder of this paper is organized as follows: Section 2 sum-
marizes the US propagation model and its linearization, justifying
the US image models considered in Section 3. Section 4 shows how
to solve the proposed deconvolution problem using an alternating
direction method of multipliers (ADMM). Results on simulated data
are presented in Section 5 whereas conclusion and future works are
reported in Section 6.

2. PROBLEM STATEMENT

2.1. US image formation model

Under the first Born approximation, the full acoustic model allows
the RF signal to be expressed as the convolution between a spatially
varying pulse and the inhomegenity of the field [7–9]. Thereby, con-
volution models are adapted in several ultrasound simulators (see
e.g., [10, 11]). In ultrasound image restoration, this model is usually
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simplified to the convolution with a spatially invariant PSF, restrict-
ing the restoration to image segments where this hypothesis roughly
holds [12]. In this work we follow this trend and propose the fol-
lowing image formation models for fundamental and harmonic RF
images

yf = Hfr + nf , (1)
yh = WHhr + nh (2)

where yf and yh ∈ RN are the observed fundamental and harmonic
RF images, r ∈ RN is the TRF to be estimated and nf and nh

∈ RN are white Gaussian additive noises with variances σ2
f and σ2

f .
Hf andHh ∈ RN×N are block circulant with circulant blocks ma-
trices accounting for the fundamental and harmonic system PSF and
N is the number of image samples. Due to the attenuation of the
harmonic image with depth, we consider in the second model a di-
agonal matrixW ∈ RN×N that accounts for the level of attenuation
at each depth (the construction of this matrix will be explained later).

2.2. TRF estimation

The objective of this work is to estimate the TRF from the funda-
mental and harmonic RF signal, based on the direct models in (2).
Using a Bayesian perspective, we propose to estimate the TRF us-
ing the standard MAP estimator, i.e., by minimizing the posterior
distribution determines using Bayes rule as follows

p(r|yf ,yh) ∝ p(yf |r)p(yh|r)p(r) (3)

where p(r) is the prior probability density function of r and the two
likelihood functions are given by:

yf |r,∼ N (Hfr, σ
2
fIN )

yh|r,∼ N (WHhr, σ
2
hIN )

(4)

where IN is the N ×N identity matrix and N stands for the Gaus-
sian distribution. Assuming independence between the two additive
noises nf and nh, the negative log-posterior of r can be obtained as

− log p(r|yf ,yh) ∝
1

2
‖yf −Hfr‖2︸ ︷︷ ︸

Fundamental data fidelity term

+
1

2
‖yh −WHhr‖2︸ ︷︷ ︸

Harmonic data fidelity term

+ log(p(r))︸ ︷︷ ︸
regularization

(5)

In this work, we consider a Laplacian prior distribution p(r),
leading to an `1-norm regularization term in the function to minimize
(see, e.g., [13,14] for a similar choice). Finally, the TRF image r can
be estimated by solving the following optimization problem

min
r

1

2
‖yf −Hfr‖22 + ‖yh −WHhr‖22 + µ‖r‖1 (6)

where µ is a hyperparameter weighting the contribution of the sparse
regularization with respect to the two data fidelity terms.

3. OPTIMIZATION

To solve the joint deconvolution problem presented in the previous
section, i.e., to determine the TRF from fundamental and harmonic
RF images minimizing (6), we propose to use an algorithm based
on the alternating direction method of multipliers (ADMM) [15,16].

ADMM is a general optimization framework able to solve the fol-
lowing problem

min
u,v

f1(u) + f2(v)

s.t. Au+Bv = c (7)

where f1 and f2 are closed convex functions and A,B, u,v and
c are matrices and vectors of correct sizes. In order to adapt our
problem to the ADMM framework, we rewrite (6) as follows

min
u,v

1

2
‖yf −Hfu‖22 +

1

2
‖yh −Wz‖22 + µ‖w‖1 (8)

with



f1(u) =
1

2
‖yf −Hfu‖22

f2(v) =
1

2
‖yh −Wz‖22 + µ‖w‖1

z =Hhr,w = u = r

v =

[
w
z

] and


A =

[
IN
Hh

]
B =

[
−IN 0
0 −IN

]
c = 0N

An iterative alternating minimization method over the vari-
ables u and v can then be applied to the augmented Lagrangian
LA(u,v,λ) associated with (8) defined as

LA(u,v,λ) = f1(u) + f2(v) +
β

2
‖Au+Bvk +

λk

β
‖22 (9)

where β is a regularization parameter for the linear constraint, and
λ =

[
λ1
λ2

]
∈ R2N is the vector of Lagrangian multipliers. The

solution of this problem can be iteratively obtained using 3 steps:
estimate u, estimate v and update the Lagrangian vector λ, as sum-
marized in Algo. 1.

Algorithm 1: ADMM algorithm for TRF estimation
Input: yf , yh,Hf ,Hh.
1. Set k = 0, choose µ > 0,β > 0 u0, v0

2. Repeat until stopping criterion is satisfied
// Estimate u (closed-form solution in

the Fourier domain)

3. uk+1 ∈ min
u

1

2
‖yf −Hfu‖22 +

β

2
‖Au+Bvk +

λk

β
‖22

// Estimate v =

[
w
z

]
// Estimate w using soft thresholding

4. wk+1 ∈ min
w

µ‖w‖1 +
β

2
‖uk+1 −w +

λk1
β
‖22

// Estimate z (closed-form solution in
the Fourier domain)

5.

zk+1 ∈ min
z

1

2
‖yh −Wz‖22 +

β

2
‖Hhu

k+1 − z+ λk2
β
‖22

// Update the Lagrangian multiplier

6. λk+1 = λk + β(Auk+1 +Bvk+1)

4. SIMULATION RESULTS

The proposed joint deconvolution method was first tested on syn-
thetic data. A controlled ground truth TRF was computed from a
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Simulated fundamental image yf , (b) simulated harmonic image
yh, (c) attenuation map used to simulate the harmonic image in (b), whose
values are equal to 1 (no attenuation) close to the probe and to 0.3 (high at-
tenuation) at the bottom of the image, d) TRF mimicking a human kidney
(r of size 1150 × 300 pixels), (e) TRF estimated by LASSO from the fun-
damental US image in (a), (f) TRF estimated by the proposed method from
fundamental and harmonic US images in (a) et (b). Note that all the images
are shown in B-mode for better visualisation.

slice of a kidney magnetic resonance image, by generating 105 scat-
ters with random Gaussian amplitudes. The size of the TRF image
considered in this experiment was 1150 × 300 pixels. Fundamen-
tal (yf ) and harmonic (yh) RF images were then simulated by 2D
convolution between the TRF and two spatially invariant PSFs Hf

and Hh, with central frequencies of 3.5MHz and 7MHz respec-
tively. The resulting images were contaminated with additive white
Gaussian noise corresponding to an SNR of 50 dB. We notice that
the algorithm can deal with higher noise level. The results obtained
using the proposed algorithm were compared to the conventional de-

convolution problem where only the fundamental data fidelity term
was considered. This classical method (referred to as LASSO) esti-
mates the TRF by solving the following optimization problem

min
r

1

2
‖yf −Hfr‖22 + µ‖r‖1. (10)

To simulate the depth attenuation of the harmonic RF image, we use
an exponential attenuation map shown in Fig. 2(c), corresponding
to W in (6). The resulting fundamental and harmonic images are
shown in Figs. 2(a) and (b). The original TRF and the estimated
obtained using the proposed method and LASSO are shown in in
Figs. 2 (d), (e) and (f) respectively. Zooms corresponding to the
red rectangle are also displayed for better visualization. A visual in-
spection of these TRF allows us to appreciate qualitatively the better
accuracy of the proposed method compared to LASSO. To confirm
these qualitative results, three quantitative measures of performance
were computed between the estimated and true TRFs: the root mean
square error (RMSE), the structural similarity index (SSIM) [17],
and the improvement signal-to-noise ratio (ISNR) [18]. The results
are provided in Table Tab. 4 showing clearly the interest of the pro-
posed method compared to classical deconvolution.

SSIM(%) RMSE ISNR(dB)

Lasso 63.95 0.0952 5.1116
Proposed method 81.60 0.0635 8.6267

Table 1. Quantitative results corresponding to the selected regions (in red)
of images in Figs. 2(d), (e) and (f).

5. CONCLUSION

The objective of this work was to study the potential interest of con-
sidering a harmonic RF image in the process of TRF restoration in
US imaging. Despite its high attenuation with depth and its low
SNR, the harmonic image has a better spatial resolution than the fun-
damental image typically used in US image restoration. Combining
this harmonic image with its fundamental counterpart provides in-
teresting deconvolution results taking into account the properties of
both images. Future works will be devoted to apply the proposed ap-
proach to in vivo data with a non-supervised approach. In this case,
the problem can be formulated as a blind deconvoltion problem into
which a PSF estimation step has to be implemented either in a pre-
processing step or jointly with the TRF estimation. Considering a
spatially varying PSF in order to better match the direct models to
practical situations is also an interesting prospect.
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