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Abstract—Estimating the cardiac motion from ultrasound (US)
images is an ill-posed problem that requires regularization. In a
recent study, it was shown that constraining the cardiac motion
fields to be patch-wise sparse in a learnt overcomplete motion
dictionary is more accurate than local parametric models (affine)
or global functions (B-splines, total variation). In this work, we
extend this method by incorporating temporal smoothness in
a multi-frame optical-flow (OF) strategy. An efficient optimiza-
tion strategy using the constrained split augmented Lagrangian
shrinkage algorithm (C-SALSA) is proposed. The performance is
evaluated on a realistic simulated cardiac dataset with available
ground-truth. A comparison with the pairwise approach shows
the interest of the proposed temporal regularization and multi-
frame strategy in terms of accuracy and computational time.

Index Terms—Optical flow, multi-frame motion estimation,
temporal regularization, ultrasound, echocardiography.

I. INTRODUCTION

Cardiac motion estimation from US images is a well-
established tool for the diagnosis of cardiovascular diseases
[1]. This is mainly due to the practical advantages of US
imaging, such as low cost and safety, but also to its relatively
high frame rates that allow the fast motions of the tissues to be
captured. The most classical cardiac motion estimation tech-
niques fall into the category of speckle tracking methods [2].
These methods seek to match blocks between images using
a similarity measure, e.g., the sum-of-squared-differences [3].
Other widely used approaches are based on parametric models,
such as affine transformations [4], or non-rigid deformation
models, typically B-splines parametrizations [5]. Differential
OF methods have also been successfully used in the context of
echocardiography [6]. The basic assumption of OF, is that the
intensities are constant across consecutive frames. The flow is
then estimated using the spatial and temporal image intensity
variations.

Motion estimation is an ill-posed problem that requires reg-
ularization. One of the most classical regularization strategies
enforces spatial smoothness, usually involving constraints on
the gradient of the motion field [7]. Parametric models also
enable regularization by restricting the number of possible dis-

placements [8]. Recently, sparsity-based regularizations have
been used successfully in various signal and image processing
problems. The key idea is that an image patch can be sparsely
represented in an appropriate learnt dictionary. In the context
of echocardiography, a sparsity-based regularization has been
successfully combined with spatial smoothness constraints to
regularize the cardiac motion estimation problem [9], [10].
In these works, a dictionary of typical cardiac displacement
patterns was learnt using patches of simulated realistic cardiac
motions.

Most of the before-mentioned techniques use only pairs
of consecutive images. One drawback of these pairwise ap-
proaches is that they fail to exploit the temporal information
embedded in the whole image sequence. Nonetheless, the
temporal aspect plays an essential part in motion analysis. This
is especially true in the case of cyclic displacement patterns,
such as cardiac motions. In the context of echocardiography,
some works have sought to incorporate this temporal aspect,
typically, by extending the B-splines basis into the time
domain [5], [11]. This also allows temporal smoothness to be
enforced, which is useful because of the presence of speckle
decorrelation due to, e.g., out-of-plane motions or artefacts.
However, these methods still rely on the choice of a single
reference frame, resulting in a decrease of accuracy for farther
frames in the sequence.

In this work, a new multi-frame OF method for cardiac
motion estimation is introduced. In Section II-A, the temporal
aspect is incorporated by defining a cost function that allows
the motions of an entire image sequence to be estimated
simultaneously. One advantage of the proposed approach is
that it does not depend on the choice of a single reference
frame. Motivated by the success of the sparsity-based regular-
ization studied in [9], the motions are constrained to be sparse
in an appropriate cardiac motion dictionary. In addition, in
Section II-B, we incorporate a priori knowledge about the
temporal evolution of motions by assuming piecewise smooth
trajectories. A robust weighting technique is employed to relax
this constraint for large temporal shifts. In Section II-C, the
resulting problem is solved using an efficient optimization
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strategy based on C-SALSA. Finally, experiments using simu-
lated data and concluding remarks are reported in Sections III
and IV.

II. MULTI-FRAME MOTION ESTIMATION

A. Proposed cost function

Let I ∈ RNM denote a sequence of 2D cardiac images,
with N the number of pixels and M the total number of
frames. The 2D motion fields Xt ∈ R2N to be estimated
between consecutive frames It and It+1 are concatenated
in a vector X ∈ R2MN . The proposed motion estimation
method is formulated as an energy minimization with an OF-
based data fidelity term EOF. The proposed regularization
strategy makes use of three different constraints: (i) a temporal
regularization term denoted as ET is introduced in order to
exploit the temporal smoothness of the motions, (ii) a total-
variation regularization ETV is used to ensure spatially smooth
motion fields, and (iii) a sparse regularization term EP exploits
the patch-wise sparsity of X when decomposed on a learnt
dictionary of cardiac motions D ∈ R2n×2q [9], with 2n
denoting the patch size and 2q the number of atoms in the
dictionary. The motion fields are finally obtained through the
minimization of the resulting energy function as follows

min
Ω,X

EOF(I,X) + λTVETV(X) + λPEP(X,Ω)

+ λTET(X) + λ1‖Ω‖1 (1)

where Ω ∈ R2q×p contains the sparse codes associated with all
the patches in the sequence. Note that in (1), the sparsity of the
vectors in Ω is enforced using the `1-norm. The regularization
parameters allowing the influence of each energy term to be
controlled are denoted as λTV, λP, λT and λ1.

As in [9], the dictionary D is learnt beforehand from a set of
training cardiac motion fields (see Section III-A). Following
[9], the online dictionary learning method [12] is used for
learning the dictionary. The motion fields are then estimated
by minimizing (1). The data fidelity term and the proposed
regularizations are detailed in the following.

1) OF-based data fidelity: The data fidelity term is based
on the OF method [7]. In this work, we propose a multi-frame
formulation using all the images in the sequence simultane-
ously, i.e.,

EOF(I,X) =
1

2
‖Y +AX‖2F (2)

where ‖.‖F denotes the Frobenius norm and Y ∈ RNM is
a vector containing the temporal derivatives of the intensities
∂tIt ∈ RN with t = 1, ...,M , A ∈ RMN×2MN is a block
diagonal matrix whose blocks are ∇ItT ∈ RN×2N where
∇ indicates the spatial gradient operator. Note that the term
(2) incorporates the OF data fidelity terms of all consecutive
frames and thus does not require the choice of a single
reference frame.

2) Sparse and spatial regularizations: The terms ETV and
EP enforce spatial smoothness and sparsity for all the motions

in X simultaneously. The spatial regularization is based on a
classical total-variation defined using the following form

ETV(X) = ‖∇hX‖2F + ‖∇vX‖2F (3)

where ∇h and ∇v indicate the horizontal and vertical gradient
components. The pairwise sparse regularization used in [9], is
also reformulated for the entire sequence, i.e.,

EP(X,Ω) = ‖P(X)−DΩ‖2F (4)

where P(.) : RMN 7→ R2n×p is an operator that extracts p
overlapping patches of size 2n from X .

B. Temporal regularization

The aim of the temporal regularization term ET is to enforce
piecewise smooth trajectories for the pixels inside the my-
ocardium. This is achieved by constraining the displacement
of each pixel at a time instant t to be close to the displacement
of the corresponding pixel in adjacent frames, while allowing
some temporal discontinuities (due, for example, to frame rate
limitations). In this work, we propose to enforce temporal
smoothness using the previous and forward frames simultane-
ously. This choice allows us to avoid biased estimates towards
the end (or beginning) of the sequence.

Let Xb and Xf be the time shifted versions of X containing
all the backward and forward motions in the sequence. One
way of enforcing smooth trajectories, consists in imposing
a constant velocity. More precisely, one can use a finite
difference approximation of the second derivatives of the
motions [13], leading to

ET(X) =
∑
i

[ 2X(i′) − Xb(i) − Xf (i
′′) ]2 (5)

where the indexes i′ and i′′ correspond to the positions of the
pixel i in the frames t and t + 1, i.e., i′ = i + Xb(i) and
i′′ = i′ +X(i′). This change in the pixel positions causes a
non linearity, which is bypassed by using an approximation
based on the 1st order Taylor expansion of the term Xi′ .
Furthermore, we propose to cope with temporal discontinuities
by using a robust weighting approach. Specifically, a weight
matrix W ∈ RMN×MN is introduced in order to assign lower
weights to the pixels with large shifts in the displacements.
The temporal smoothness constraint is thus relaxed for large
temporal discontinuities, e.g., at end-systole. More specifically,
the weights are computed for the current residual using the
Lorentzian weight function, which is a redescending M-
estimator that allows the influence of the discontinuities to
be decreased to zero. After applying the Taylor expansion
and introducing W , the regularization term is reformulated
as follows

ET(X) = ‖W 1/2[2X − (Xb − 2XT
b Xb +Xf )]‖2F (6)

where the pixel index i′′ has now been dropped from Xf . Note
that W is computed iteratively using the previous residual
value, i.e., e = 2X−(Xb−2LXT

b Xb+Xf ), such that W =
diag([w(e1), ..., w(eMN )]) where w denotes the Lorentzian
weight function.
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C. Proposed optimization strategy

Problem (1) is solved using the C-SALSA algorithm [14].
C-SALSA is based on the alternating direction method of mul-
tipliers (ADMM), which iterates between simple optimization
sub-problems. This approach provides a flexible framework
that allows us to deal with the different regularization terms
considered in this work. Furthermore, it allows us to cope with
the high dimensionality of the unknown matrices X and Ω,
as well as the presence of the non-quadratic term ‖Ω‖1.

The sub-problems are formulated by introducing 7 auxiliary
variables that stand for the motion fields in X and the sparse
codes Ω. The optimization problem (1) is reformulated as
follows

min
V1−V5

1
2‖Y +AV1‖2F + λTV(‖∇hV21‖2F + ‖∇vV22‖2F )

+λP‖P(V31)−DV32‖2F + λ‖V4‖1 + λTET(V5)
(7)

subject to

V1 = X
V21 = ∇hX V32 = Ω
V22 = ∇vX and V4 = Ω.
V31 = X
V5 = X

(8)

The augmented Lagrangian associated with the problem (7) is
defined as follows

L(X̃,V ,G) = E(V ) +
µ

2
‖HX̃ − V −G‖2F (9)

where the auxiliary variables are concatenated in V , X̃
contains X and Ω, the matrix H stands for the corresponding
identity or gradient operators, G contains the Lagrange mul-
tipliers corresponding to V , µ > 0 is the penalty parameter,
and E(V ) is the cost function associated with the problem
(7). Finally, the minimization is carried out by iterating be-
tween optimizations with respect to each variable (or auxiliary
variable) and updating the Lagrange multipliers in G. The
different iterations of the C-SALSA scheme are summarized
in Algorithm 1.

Algorithm 1: Motion estimation using C-SALSA
Input : Images I , regularization parameters λTV, λP, λ, λT ,

penalty µ and initializations V 0, G0, X̃0.

1 for k = 1, ..., kmax do
%Motions and sparse codes

2 X̃k ∈ argmin
X̃

L(X̃,V k−1,Gk−1);

%Proximal computations
3 V k ∈ argmin

V

L(X̃k,V ,Gk−1);

%Lagrange multipliers
4 Gk = Gk−1 − (HX̃k − V k);
5 end

Output: The motions X and the associated sparse codes Ω.

III. EXPERIMENTS

In this section, the proposed multi-frame approach is tested
using a realistic simulated cardiac US sequence. We focus on
the comparison of the proposed approach with the pairwise
method studied in [9]. In addition, the impact of the temporal
regularization term is investigated. The comparison is based
on the endpoint error [15] between the estimated motion fields
and the ground-truth. The different regularization parameters
involved in all tested methods were tuned to provide the best
performance.

A. Dataset

In this work we use a realistic cardiac US dataset with
available ground-truth1. The true motion fields provide the
possibility of training the motion dictionaries as well as
evaluating the motion estimation accuracy. In this work, the
dictionaries are learnt using the LADdist sequence, and the
tests are conducted on the LADprox sequence of the same
dataset. The sequences contain 34 frames of size 224 × 208
(pixel size 0.7×0.6mm) with a frame rate of 22Hz (see Fig. 2-
a for an example).

B. Motion estimation results

The errors obtained for the proposed multi-frame and
pairwise approaches are reported in Table. I. The proposed
multi-frame method with temporal regularization is referred
to as Multi-frame TR, whereas the proposed method without
temporal regularization is denoted as Multi-frame. One can see
from this table that the proposed approaches lead to smaller
global errors for this sequence. In addition, the use of the
temporal regularization yields the best performance. Notice
that the multi-frame approaches required significantly shorter
execution times when compared to the pairwise method.

Method Pairwise Multi-frame Multi-frame TR
Errors 0.14±0.11 0.12±0.11 0.11±0.10
Time (s) 52.33 10.27 12.54

TABLE I: Means ± stds of the endpoint errors for the
LADprox sequence and the average execution times per frame.

Fig. 1 shows the temporal evolution of the mean errors
for the LADprox sequence. This figure shows that the pro-
posed multi-frame approaches (with and without temporal
regularization) outperform the pairwise method over the entire
cardiac cycle (excluding the first frame). A relatively larger
improvement can be observed in the systole phase, where
the displacements have higher magnitudes. Overall, the multi-
frame approach with temporal regularization leads to the best
performance.

The systolic motion field obtained using the Multi-frame TR
approach is displayed in Fig. 2-a. One can see from this figure
that the estimated displacements are consistent with the inward
systolic motions of the myocardium. In order to have more

1The data and related papers can be found at https://team.inri
a.fr/asclepios/data/straus/
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Fig. 1: Comparison of the mean errors vs time for the pro-
posed multi-frame method with temporal regularization (TR),
without temporal regularization and the pairwise method of
[9].

Fig. 2: (a) Estimated motion field for a systolic frame. (b) The
estimated trajectories of a point in the basal segment of the
myocardium vs the ground-truth. The position of the point is
indicated by a red square in (a).

insight into the effect of the temporal regularization, Fig. 2-b
also shows the obtained trajectories for a point in the basal
segment of the myocardium. This figure shows that the Multi-
frame TR approach yields a trajectory that is significantly
closer to the ground-truth when compared to those obtained
with the other approaches. One can also see that the pairwise
method provides the least accurate trajectory for this point.

IV. CONCLUSIONS

This paper introduced a new multi-frame approach with
sparse and temporal regularizations for cardiac motion esti-
mation in US images. The proposed approach used a regu-
larization imposing sparsity in a learnt dictionary of typical
cardiac motions. A weighted temporal regularization term
enforcing piecewise smooth trajectories was also proposed.
Finally, temporal consistency was incorporated by estimating
the motions of an entire sequence at once without relying on a
single reference frame. An efficient optimization strategy using
the C-SALSA scheme was designed to solve the optimization
problem resulting from the different regularizations. The pro-
posed method was tested using a dataset of realistic cardiac US
simulations. Experimental results showed an improvement in
the motion estimation accuracy with a reduced computational
time in comparison with a pairwise method also employing a
dictionary learning-based regularization.
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