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Abstract—Ultrasound imaging is a well-established modality,
widely used for in vivo real time examination. Nevertheless, the
ability of conventional ultrasound techniques is limited by the
fact that different biological tissues are sometimes represented
with the same image brightness, thus hindering visual — as well
as automatic — identification. Especially valuable for tissue dif-
ferentiation is the pressure wave velocity, which can be measured
with ultrasound. Deep-learning-based methods carry a possibility
to overcome such limitations and enable robust signal-based
tissue identification. Such methods have been successfully applied
to tackle various challenges of medical imaging research. The
aim of the present work is to propose a Generative Adversarial
Network (GAN) pipeline towards pixel-wise speed of sound (SoS)
reconstruction from plane-wave ultrasound raw channel signals
corresponding to three firing angles. The network is trained on a
novel synthetic dataset focusing on complex geometry, generated
with K-Wave. Results demonstrate a promising performance,
with average (± STD) absolute SoS reconstruction errors of 38
±54 m/s in real time at 114 fps. The proposed approach paves
the way towards GAN-based ultrasound histology.

Index Terms—Deep learning, Ultrasound, Speed of Sound
reconstruction

I. INTRODUCTION

Pressure wave velocity (i.e. speed of sound, SoS) is an
intrinsic property of biological tissues. Various anatomical
components (e.g. muscle, tumor, atherosclerotic plaque) are
characterised by their own specific mechanical density, which
locally defines the SoS [1]. This property is often described
as a potential biomarker for different forms of cancer [2]
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and can be estimated using ultrasound imaging. Medical
ultrasound B-mode imaging is a structural modality providing
a detailed representation of the imaged region. However, such
information can sometimes be ambiguous — and therefore
lead to inaccurate diagnosis — when tissues of different nature
result in the same pixel brightness.

There have been extensive developments in the application
of deep learning to ultrasound imaging, mainly focused on
segmentation, labelling and classification [3]. However, recent
works have explored the problem of ultrasound inversion [4],
namely the reconstruction of information regarding tissues
acoustic properties via raw signals. Traditionally, this task
was addressed with full-wave inverse scattering, which re-
quires large computational resources and often limited to
specific acquisition scenarios [5]. Current researches support
the idea to replace conventional explicit approaches with novel
implicit deep-learning-based techniques. A single-sided SoS
inversion solution using a fully convolutional deep neural net-
work was developed [6]. A deep-learning-based reconstruction
framework was proposed for the scenario of limited-angle
ultrasound tomography in prostate cancer [7]. In both cases,
promising results are achieved, yet the samples geometry was
rather simple. Introduction of more complex and realistic
datasets can help the development of more efficient methods of
reconstruction and address the problem of domain gap between
synthetic and real data. Addressing this challenge, the aim
of this study is to propose a GAN-based approach towards
functional imaging via pixel-wise SoS reconstruction.

Program Digest, 2019 IEEE International Ultrasonics Symposium (IUS)
Glasgow, Scotland, October 6-9, 2019

978-1-7281-4595-2/19/$31.00 ©2019 IEEE WeI1.5



CT (Hounsfield units) Density (g/cm3) Plane-waveGround-truth SoS (m/s) Reconstructed SoS (m/s)

GANk-Wave

1550

1500

1450

1400

1350

1300

m
/s

Fig. 1. Proposed reconstruction pipeline. The generative adversarial network (GAN) is used to reconstruct pixel-wise SoS values of tissues from plane-wave
raw channel data. Training pairs are obtained using simulations from preprocessed CT data.

II. METHODS

A. Dataset preparation

The synthetic data approach was chosen in the described
pipeline since collecting the real world data is practically
impossible. The dataset consists of 9500 pairs of plane-wave
raw channel data (3 firings for each pair) and corresponding
ground truth medium data (SoS and density maps). When
preparing the simulated dataset the goal was to obtain the
realistically looking SoS maps. It is a complicated task to
produce such maps via direct measurements or modelling.
Therefore the assumption is that medium maps which yield
realistically looking simulated B-mode images are realistic
enough themselves. K-Wave MATLAB toolbox was chosen [8]
as the ultrasound simulation software because it can account
for acoustic heterogeneities while preserving a moderate run
time on GPU. Experiments with speckle noise modelling and
acoustic interface geometries were carried out, and based
on that the data preparation protocol that yielded the best
looking B-mode images was used. The dataset was prepared
in accordance with this protocol as described below.

First cross-sectional regions from publicly available ab-
dominal CT scans from the Visible Human Project [9] were
extracted utilising both male and female volumes. CT scans
contain the modality-specific noise [10] which can lead to
incorrect results when they are used directly as the input
to the ultrasound simulation software. In order to overcome
this, scans were segmented using k-means [11] algorithm with
5 clusters. Next SoS and density values we obtained from
segmented CT regions using the scale from the experimental
data [12]. Due to the run time considerations, Hounsfield units
of CT scans were truncated to the values corresponding to the
SoS in the range of 1300 m/s and 1700 m/s. After that a
random speckle is added in the density domain. The noise
generation approach is based on [6] with the following mod-
ifications that helped achieve better looking B-mode images.
1) Heterogeneous noise with mass density variations between
±2% and ±10% depending on the SoS of the segmented
region. 2) Noise distribution density of 21 reflectors per
cubic wavelength. Resulting SoS and noisy density maps were
used as the input for the simulations. The dataset preparation
pipeline is showed in Figure 1.

Simulations were performed on cropped sections of size
21.2×45×1.1 mm (depth × width × elevation thickness). For
the transmitter and the sensor the Cephasonics CPLA12875

(Cephasonics, CA, USA) linear transducer was modelled. It
features 64 active elements, 128 elements in total and the
central frequency of 5MHz. For each cropped section of
medium maps three overlapping firings were simulated: one
central and two 15°angled outside looking plane-waves. The
simulation setup is showed in the Figure 2.

Raw channel data from the simulations was cropped to
remove the transmit pulse and later the time gain compensation
was applied. Finally both SoS maps and raw channel data
were reshaped to the size of 256 × 256 pixels for one firing
or 256 × 512 pixels for three overlapping firings with the
normalised brightness between 0 and 1.
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Fig. 2. Simulation setup. Three firings with steering angles of +15°, 0°and
-15°are used to simulate raw channel data for one training pair. Each firing
covers a half-width part of the full reconstruction domain and uses a half of
the transducer’s elements.

B. Network architecture

The architecture is based on the pix2pix conditional
GAN [13]. Recent research shows outstanding performance
of this type of architecture in the field of image to image
mapping [14]. The most important aspect that defines the
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decision to explore this architecture is the ability to learn com-
plex generation quality criterion in the form of discriminator
network. This helps to avoid excessive blurring present in other
architectures such as direct use of auto-encoders.

The U-net generator network was modified by introducing
individual downsampling branches for each of three input raw
channel data. In the upsampling branch, the feature maps
from different downsampling branches are combined at every
size step in the following way. Two side feature maps are
concatenated and then overlapped with the central feature map.
After that, the resulting combined feature map is normalised.
Such three-to-one combination gives the network a possibility
to learn individual downsampling path for a differently angled
input data while preserving their known spatial relation for the
united upsampling path. The downsampling and upsampling
are done through series of 4× 4 convolutions/deconvolutions
with a stride of 2 and a padding of 1. This operation changes
the resolution by a factor of two at each step. The modified
generator architecture is shown in the Figure 3. In addition
to that, the one-to-one architecture was tested. It features
only one downsampling branch that corresponds to data from
the central firing. Training and evaluation was done in Py-
Torch [15].

III. RESULTS

The network was trained for a total of 300 epochs on
our synthetic dataset. The same learning scheme as in the
pix2pix paper [13] was used with a linear decay of the learning
rate, the batch size of 10 and the least squares loss function.
The reconstruction method was evaluated on a test dataset
of 200 new data pairs, with an inference performing at 114

1×256×256 1×256×256 1×256×256

+15° angle 0° angle -15° angle

64×128×128

128×64×64

256×32×32

64×128×128 64×128×128

128×64×64 128×64×64

256×32×32 256×32×32

512×16×16 512×16×16 512×16×16

512×8×8 512×8×8 512×8×8

512×4×4 512×4×4 512×4×4

512×2×2 512×2×2 512×2×2

512×2×4

512×4×8 512×4×8

512×8×16 512×8×16

512×16×32 512×16×32

256×32×64 256×32×64

128×64×128 128×64×128

64×128×256 64×128×256

1×256×512

Conv. + Batch Norm. + Leaky ReLU

Trans. Conv. + Batch Norm. + ReLU

Overlap + Norm. + Concat.

Downsampling branches 

for raw channel data

from different steering angles 

Upsampling branch

for SoS map

Fig. 3. Three-to-one variant of the generator architecture. Input layers take
preprocessed and resized raw channel data. The output layer corresponds to
the full-size reconstructed SoS map.

fps. Evaluation results are showed in the Figure 4. The mean
absolute (±STD) error when quantifying the pixel-wise SoS
was 38± 54 m/s (bias of 7 m/s, Bland-Altman 95% limits of
agreement of [−123, 136] m/s). Compared to the actual SoS
magnitude, the mean absolute relative error was 3± 4%.

IV. DISCUSSION

The trained generator is able to reconstruct large structures
with a good level of accuracy. However, smaller objects can
be missed, especially when they are only slightly different
from the surroundings in terms of the SoS and density.
Additionally, the method can address the noise reduction task
and produce reconstructed structures with clearly differentiable
boundaries. One-to-one and three-to-one variations of the
generator architectures were tested. Both of them achieve
similar level of performance, however three-to-one variant
offers two times wider reconstruction area. The central area of
the reconstruction shows higher degree of pixel wise accuracy
than areas on the side borders. This can be improved by the
utilisation of data from additional angled firings. The pipeline
is able to run in real time and can stay in this time frame even
with additional downsampling branches.
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Fig. 4. Evaluation results. Generated SoS maps were produced with the three-
to-one variant of the generator architecture.
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V. CONCLUSION

Paving the way towards fine-tuning of the beamforming de-
lays, pixel-wise SoS has potential to decrease image distortion
by refining the conventionally accepted value of 1540 m/s.
Overall the high potential of generative adversarial networks in
the task of reconstruction of complex heterogeneous structures
is clearly seen. But such deep-learning-based methods are
crucially dependant on the quality and the amount of training
data. Thus, the creation of a standardised SoS reconstruction
dataset will establish a good ground for the direct comparison
of existing approaches and boost the overall development of
new promising ideas.
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