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Abstract – Molecularly targeted microbubbles (MBs), comprising a 

gas core and a functionalized shell, 1-5 µm in diameter, enable 

visualization of disease marker concentration using a method 

termed ultrasound molecular imaging (USMI). The current state-of-

the-art method for USMI based quantification of molecular markers 

is differential targeted enhancement (dTE), which employs 

destructive pulses of ultrasound to quantify the amount of targeted 

MB adherence. In this study, we sought to quantify the signal from 

adherent MBs non-destructively using a statistical parameter 

termed normalized singular spectrum area (NSSA) in a murine 

tumor model. The sensitivity and specificity of NSSA-based signal 

classification was compared to matched dTE measurements in a 

mouse hindlimb tumor.  
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I. INTRODUCTION 

Ultrasound contrast agents, comprising highly echogenic 

microbubbles (MBs), are currently utilized for left 

ventricular opacification [1] and perfusion imaging [2], 

[3]. When conjugated with antibodies or peptides, MBs 

can be molecularly targeted to disease markers on the 

vascular endothelium, thus allowing for sensitive 

visualization of disease markers in a technique known as 

ultrasound molecular imaging (USMI). USMI has been 

utilized to detect vascular markers of cancer in numerous 

preclinical [4]–[7] and clinical [8]–[11] studies. 

To differentiate between circulating “free” MBs and 

molecularly bound “adherent” MBs, most preclinical 

imaging protocols employ differential targeted 

enhancement (dTE) [12]–[20]. dTE is a measurement of 

the difference between the late enhancement ultrasound 

signal (circulating MBs + adherent MBs) and the signal 

after destruction of contrast through high-intensity 

ultrasound (circulating MBs only). Because dTE 

techniques extract a single image from the entire time 

course of injection, dTE is not real-time and typically 

requires wait times of 5-10 minutes before quantification 

[12], [13], [15], [21], [22]. While some clinical studies 

have quantified MB adherence through the late 

enhancement signal only [11], this method takes up to 30 

min and requires manual delineation of the intratumoral 

region of interest (ROI) to eliminate false positive artifacts 

from strongly reflecting tissues [11], [23], [24].  

Previous studies have shown that normalized singular 

spectrum area (NSSA), a statistical property of 

spatiotemporal data that is monotonic with interframe 

signal decorrelation, can differentiate between adherent 

and non-adherent MB signals in large vessel environments 

in vitro [25], [26]. In this study, we hypothesized that the 

NSSA values of adherent MB signals are statistically 

different from NSSA values of non-adherent MBs. This 

hypothesis was tested in a murine tumor model in vivo, 

and NSSA measurements were compared to 

corresponding dTE measurements. The classification 

performance of both techniques was assessed using 

receiver operating characteristic (ROC) analysis. 

II. MATERIALS AND METHODS 

Microbubble fabrication 

The method for MB preparation has been described 

previously [27]. Briefly, MBs were fabricated by 

sonicating a lipid micellar mixture of distearoyl 

phosphatidylcholine (Avanti Polar Lipids, Alabaster, AL, 

USA), polyethylene glycol stearate (Stepan Kessco, 

Elwood, IL, USA), and biotin-PEG3400-

distearoylphosphatidylethanolamine (PEG_DSPE, 

Shearwater Polymers, Huntsville, AL, USA) and 

decafluorobutane gas (F2 Chemicals, Lancashire, UK) in 

normal saline. MBs were counted using a Coulter 

Multisizer 3 (Beckman Coulter, Brea, USA) and a 

streptavidin linker (Anaspec Inc, Fremont, CA, USA) was 

added at a concentration of 3 µg/10×106 MBs [28]. 

MBs were either conjugated to anti-mouse vascular 

endothelial growth factor receptor 2 (VEGFR2) antibody 

(clone Avas 12 a1, eBioscience, San Diego, CA, USA) or 

isotype control antibody (clone R35-95, BD Pharmingen, 

San Diego, CA, USA). MBs were conjugated to 

antibodies and MB size distribution and concentration was 

measured using a Coulter Multisizer 3 within 48 hours 

before each experiment. 
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Mouse hindlimb tumor model 

Following an institutionally approved Animal Care and 

Use Committee Protocol, female C57 BL/6 mice were 

implanted with subcutaneous murine colon 

adenocarcinoma cells (MC38, Kerafast, Boston, MA, 

USA). When implanted tumors reached approximately 1 

cm in diameter, mice were anesthetized with isoflurane 

gas (Henry Schein, Dublin, OH, USA) and imaged using 

a Verasonics programmable scanner (Vantage 256; 

Verasonics, Redmond, WA, USA). Doses of 2×107 MBs 

were diluted in 50 µL of phosphate-buffered saline and 

administered via tail vein catheter. 

Each mouse received two injections of either VEGFR2-

targeted or isotype control MBs. For one injection, MBs 

were destroyed at 1 min post-injection. For the other 

injection, MBs were destroyed at 6 min post-injection. For 

each of these experiments, dTE was measured by 

subtracting the mean post-burst signal from the mean pre-

burst signal. The ordering of injections was randomized 

between individual mice. 

Imaging and data collection 

A Verasonics ultrasound scanner and 128-element L12-5 

38 mm linear array transducer (Philips Healthcare, 

Andover, MA, USA) was used to implement pulse 

inversion imaging with synthetic aperture virtual source 

elements [7], [29], [30]. 

For dTE measurements, an intratumoral region of interest 

(ROI) of each mouse tumor was manually delineated. 

Mean signal within this ROI was calculated pre- and post-

destruction. Corresponding NSSA values were calculated 

within this ROI from pre-destruction ultrasound signals. 

Each NSSA value was calculated from a sliding 3D 

window of spatiotemporal signals which was 5×5×25 

samples, or 0.5mm×1mm×1.2s in the axial, lateral, and 

temporal dimensions, respectively. By sliding the window 

(step size = 1) axially and laterally, a complete mapping 

of NSSA values could be created for a 25-frame ensemble 

of ultrasound IQ data.  

Data analysis 

For a sample size of 9 mice, mean dTE and NSSA values 

were collected for highly reflective tissue signals, targeted 

MB signals, and non-targeted MB signals at each time 

point. A one-way analysis of variance (ANOVA) and 

post-hoc multiple comparisons test (significance level = 

0.01) were used to compare these signals. The linear 

correlation was measured between dTE measurements 

and NSSA measurements for all MB signals. 

The signal classification performance of dTE and NSSA 

was assessed using receiver operating characteristic 

(ROC) analysis. Classification performance was assessed 

for separation of tissue signals from all MB signals and 

separation of adherent MB signals (targeted, 6 min post-

injection) and non-adherent MB signals (non-targeted, 6 

min post-injection). Differences between the ROC area 

under the curve (AUC) were assessed using a one-tailed 

Henley and McNeil method [31] (significance level = 

0.01). 

III. RESULTS AND DISCUSSION 

Linear relationship between NSSA and dTE 

For all MB signals, NSSA values had a strong linear 

correlation with dTE values, with an R2 value of 0.82 (Fig. 

1). These results suggest that NSSA measurements of MB 

adherence are consistent with the “state of the art” method 

for quantifying targeted MB adherence. 

 
Fig. 1. NSSA measurements show a strong linear correlation with 

dTE measurements. NSSA and dTE measurements of tissue signals 

(black dots) also show that NSSA allows for robust separation of MB 
and tissue signals, while dTE is incapable of separating tissue signals 

from all MB signals.  

 

ROC analysis of classification performance 

For separation of all MB signals from tissue signals, ROC 

analysis (Fig. 2) revealed an AUC of 0.88 for dTE and 1.0 

for NSSA. A one-tailed Hanley and McNeil test showed 

that NSSA-based classification was significantly more 

specific than dTE-based classification (p<0.01). For 

separation of adherent and non-adherent MB signals, 

ROC analysis yielded an AUC of 0.99 for dTE and 0.96 

for NSSA. The Hanley and McNeil test showed that these 

two classification performances were not statistically 

significant (p = 0.306). These results suggest that for 

separation of tissue, adherent MB, and non-adherent MB 
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signals, NSSA matches or improves upon the signal 

classification performance of dTE. 

 
Fig. 2. NSSA matches the signal classification performance of 

dTE. For separation of adherent and non-adherent MBs (magenta 
plots), no statistically significant difference was found between 

NSSA and dTE based signal classification. For separation of tissue 

signals from MB signals (black plots), NSSA outperformed dTE with 
a ROC AUC of 1, equivalent to “ideal” classification performance.  

 

IV. CONCLUSIONS 

This study validated NSSA as a non-destructive 

measurement of MB adhesion in a murine tumor. NSSA 

matched or exceeded the MB classification performance 

of dTE without requiring destruction of contrast agent. 

The ability of NSSA to robustly separate between tissue 

signals, adherent MB signals, and non-adherent MB 

signals creates the potential for automatic segmentation of 

MB signals through NSSA-based image filtering.  
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