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Abstract—Retrospective Encoding For Conventional Ultra-
sound Sequences (REFoCUS) enables recovery of the full-
synthetic aperture (FSA) dataset from focused transmits while
avoiding the drawbacks of single- and virtual-element trans-
missions. It was recently shown that a regularized inversion
approach significantly improves the accuracy of the recovered
FSA dataset over the REFoCUS method when applied to a
walking-aperture transmit sequence. However, this approach
becomes computationally burdensome when applied to walking
aperture sequences on larger linear arrays. We present an
iterative form of REFoCUS that improves FSA dataset recovery
to better handle these cases.

Index Terms—Synthetic Aperture, Forward-Adjoint Oracles,
Matrix-Free Optimization, Conjugate Gradient

I. INTRODUCTION

Ultrasound images on commercial ultrasound systems are
typically generated from channel data acquired from a set of
focused transmissions. These systems apply dynamic-receive
focusing to channel data from each transmit beam in order
to form A-lines in the ultrasound image. Virtual source syn-
thetic aperture imaging techniques employ a set of parallel
imaging lines for each transmit beam in order to improve
transmit focusing in the image [1]. However, because this
image formation approach requires accurate characterization
of the spatial profile of the transmit beam as it propagates
through space and can introduce a discontinuity artifact at
the focal depth. Because virtual source synthetic aperture
relies on entire transmit beams for image reconstruction,
imaging quality is mainly limited by assumptions made about
sound speed in the medium during the transmit beamforming
process. Furthermore, in the presence of sound speed errors
and phase aberration, it becomes difficult to accurately place
the wavefront for the focused transmit beam.

Recent works [2]–[4] have shifted their focus away from
virtual source synthetic aperture towards the recovery of the
full-synthetic aperture (FSA) dataset. Since the FSA dataset
consists of receive channel data from individual transmit
elements, the weights and delays applied to each individual el-
ement can be flexibly adjusted to account for phase aberration
induced by sound speed inhomogeneity in the medium. As a
result, recovery of the FSA dataset and subsequent focusing of
channel data can result in optimal focusing (diffraction limited
resolution) at all points in the image. Retrospective Encoding

for Conventional Ultrasound Sequences (REFoCUS) [2] was
initially proposed for recovering the FSA dataset by summing
transmit beam data that has been delayed to align at each
individual transmit element. This approach was shown to be
mathematically adjoint to the transmit beamforming process.
Because the adjoint no longer approximates the inverse for the
walking aperture transmit sequence, regularized inversion was
also investigated for FSA dataset recovery [3].

This work proposes an iterative scheme for recovering the
FSA dataset by pairing the transmit beamforming (forward)
process with REFoCUS (adjoint) to form a forward-adjoint
oracle (FAO) [5]. We pose FSA dataset recovery as a least-
squares problem so that FSA channel data may be recovered
by using the conjugate gradient (CG) algorithm. Although
regularized inversion significantly improves the accuracy of
the recovered FSA dataset for walking-apertures transmit
sequences [3], regularized inversion becomes computationally
burdensome when applied to large linear arrays that addition-
ally require walking receive apertures. We present an iterative
technique that generalizes FSA dataset recovery to better
handle these challenging cases.

II. THEORY

A. Forward Model for Transmit Beamforming

We denote uTR(t) as the full-synthetic aperture dataset
indexed by transmit element T 2 [1, ..., Nelem] and receive
element R 2 [1, ..., Nelem]. The received channel data snR(t)
from transmit beam n 2 [1, ..., Nbeams] can computed from
the full-synthetic aperture dataset by the delay-and-sum for-
mula

snR(t) =
Nelem
X

T=1

wnTuTR(t� ⌧nT ), (1)

where ⌧nT and wnT are the delay and apodization applied to
transmit element T in constructing transmit beam n. Taking a
Fourier-transform of this delay-and-sum equation yields

SnR(f) =
Nelem
X

T=1

AnT (f)UTR(f) (2)

where AnT (f) = wnT e
�j2⇡f⌧nT . Indexed over all transmit

beams, this summation can be written as a system of linear
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equations, which can be concisely written as the matrix-vector
product

SR(f) = A(f)UR(f) (3)

where UR(f) 2 CNelem , A(f) 2 CNbeams⇥Nelem , and
SR(f) 2 CNbeams .

B. REFoCUS: the Adjoint of Transmit Beamforming

REFoCUS [2] proposes to recover an estimate ÛR(f) of
the FSA dataset by applying the adjoint of A(f) to SR(f),
the set of focused transmit beams, at each frequency f :

ÛR(f) = A⇤(f)SR(f) = [A⇤(f)A(f)]UR(f). (4)

The time-domain equivalent of this operation is the following
time-advance and sum formula:

ûTR(t) =
Nbeams
X

n=1

wnT snR(t+ ⌧nT ). (5)

If A⇤(f)A(f) were the identity matrix, the FSA dataset
would be recovered exactly. However, as shown previously
in [3], A⇤(f)A(f) can be far from the identity matrix for
certain transmit sequences. This observation initially motivated
using regularized inversion as a pseudoinverse rather than the
adjoint. However, regularized inversion offers no time-domain
equivalent implementation and can be costly to implement
for a large linear array with walked transmit and receive
apertures. Rather than determine a closed-form inversion, the
following section shows an iterative reconstruction scheme that
uses transmit beamforming and REFoCUS as its mathematical
adjoint.

C. Iterative Forward-Adjoint Reconstruction

Algorithm 1 summarizes the implementation of the CG-
based iterative REFoCUS algorithm in the frequency domain.
All matrix-vector multiplications involved in the CG algorithm
use A(f) and its adjoint A⇤(f). When Algorithm 1 translated
to the time domain implementation shown in Algorithm 2,
each instance of A(f) and A⇤(f) is replaced by the delay-
and-sum (1) and advance-and-sum (5), respectively.

Algorithm 1 Iterative REFoCUS in the Frequency Domain

1: q0
R(f) = A(f)Û

0

R(f)� SR(f)
2: p0

R(f) = r0R(f) = A⇤(f)qR(f),
3: for k = 0, ...,K � 1 do
4: vk

R(f) = A(f)pk
R(f)

5: ↵

k
R(f) = krkR(f)k22/kvk

R(f)k22
6: Û

k+1

R (f) = Û
k

R(f) + ↵

k
R(f)p

k
R(f)

7: qk+1
R (f) = qk

R(f) + ↵

k
R(f)v

k
R(f)

8: rk+1
R (f) = A⇤(f)qk+1

R (f)
9: �

k
R(f) = krk+1

R (f)k22/krkR(f)k22
10: pk+1

R (f) = �rk+1
R (f) + �

k
R(f)p

k
R(f)

11: end for
12: return Û

K

R (f)

Algorithm 2 Iterative REFoCUS in the Time Domain

1: q

0
nR(t) = �snR(t) +

PNelem

T=1 wnT û
0
TR(t� ⌧nT )

2: p

0
TR(t) = r

0
TR(t) =

PNbeams

n=1 wnT q
0
nR(t+ ⌧nT ),

3: for k = 0, ...,K � 1 do
4: v

k
nR(t) =

PNelem

T=1 wnT p
k
TR(t� ⌧nT )

5: ↵

k
R(t) =

PNelem

T=1 (rkTR(t))
2
/

PNbeams

n=1 (vknR(t))
2

6: û

k+1
TR (t) = û

k
TR(t) + ↵

k
R(t)p

k
TR(t)

7: q

k+1
nR (t) = q

k
nR(t) + ↵

k
R(t)v

k
nR(t)

8: r

k+1
TR (t) =

PNbeams

n=1 wnT q
k+1
nR (t+ ⌧nT )

9: �

k
R(t) =

PNelem

T=1 (rk+1
TR (t))2/

PNelem

T=1 (rkTR(t))
2

10: p

k+1
TR (t) = �r

k+1
TR (t) + �

k
R(t)p

k
TR(t)

11: end for
12: return ûK

TR(t)

III. METHODS

A. Field II Simulation

Field II was used to simulate the complete FSA dataset for a
diffuse-scattering medium whose reflectivities were modified
to simulate a +6 dB hyperechoic lesion at 10 mm depth, a
+12 dB hyperechoic lesion at 20 mm depth, and an anechoic
lesion at 30 mm depth, all with 2 mm radius. The Field II
simulation used a 96-element linear array with 0.154 mm
pitch, and transmit pulse with 5 MHz center frequency and
70% fractional bandwidth. The sound speed in the medium is
1540 m/s and the sampling frequency of the channel data is
100 MHz. Receive channel data for focused transmit beams
were simulated from the FSA dataset by using equation (1).
The delays for the focused transmit beams in the walking
aperture transmit sequence are

⌧nT =
1

c

n

p

x

2
n + z

2
n �

p

(xT � xn)2 + z

2
n

o

, (6)

where (xn, zn) is the transmit focus, (xn, 0) is the beam
origin, and (xT , 0) are the coordinates of the transmit element
T. Each transmit beam, focused at 30 mm depth, is emitted
by an 8 mm rectangular walking aperture that translates from
-3.65 to 3.65 mm in 0.05 mm steps.

B. Measurement of FSA Dataset Recovery

To monitor the recovery of FSA dataset at each iteration
of CG, correlation is measured between the true and the
recovered FSA datasets:

⇢ =
COV[ûTR, uTR]

p

COV[ûTR, ûTR] · COV[uTR, uTR]
. (7)

Time-gain compensation is applied to both the recovered and
true FSA datasets in order to adjust for the geometric spreading
of the acoustic wave:

COV[ûTR, uTR] =

Z 1

�1
t

2

0

@

Nelem
X

T,R=1

ûTR(t)uTR(t)

1

A

dt. (8)
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Fig. 1. Recovery of the FSA dataset at each iteration of CG. The first panel shows an image reconstructed from the true FSA dataset simulated in Field II.
The second panel shows an image reconstructed from the FSA dataset recovered using regularized inversion (� = 0.001), which achieves 0.9911 correlation
with the ground truth. The next three panels show FSA images reconstructed from FSA datasets recovered from the walking aperture sequence at iterations
1, 30, and 60 of CG. The final plot show the correlation between the true and recovered FSA datasets as a function of the number of iterations of CG.

Fig. 2. Experiments in phantoms initially show strong artifacts close to the transducer surface and blind spots at the edges of the transducer, both of which
disappear with each iteration. At 20 mm depth, resolution improves by 35% and 59% at iterations 30 and 60 of CG.

C. Full-Synthetic Aperture Image Reconstructions

The FSA image reconstructed from the FSA dataset recov-
ered at each step of CG was compared to the FSA image recon-
structed from the true FSA dataset. Furthermore, the walking
aperture transmit sequence summarized in Table I was used to
collect receive channel data from the L12-3v ultrasound probe
on a CIRS 040GSE phantom. FSA datasets were recovered
at each iteration of CG, and the corresponding FSA images
were reconstructed. Resolution and spatial coherence [6] were
quantified in the resulting images.

IV. RESULTS

A. Iterative Recovery of the FSA Dataset

Figure 1 shows the correlation between the true and re-
covered FSA dataset steadily increase with each iteration
of CG. Initially, the reconstructed FSA images have poor
resolution and a large amount of sidelobe clutter visible inside

TABLE I
WALKING-APERTURE TRANSMIT SEQUENCE ON VERASONICS L12-3V

Parameter Value Units
Transmit Frequency 7.8130 MHz

Focal Depth 13.8 mm
Beam Origins -19.1:0.2:19.1 mm

Aperture Width (Around Beam Origin) 25.2 mm

the anechoic lesion. However, as CG iterates through the
transmit beamforming model and REFoCUS, the recovered
FSA dataset becomes increasingly accurate and we observe
the diffraction-limited resolution observable in the image re-
constructed from the true FSA dataset. This indicates that the
iterative recovery scheme reconstructs the signals for each
single-element transmit so that FSA image reconstruction
achieves complete transmit focusing at every point in the

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

TuE5.2



Fig. 3. Experiments in phantoms show that spatial coherence as a function of
lag becomes increasingly triangular with each iteration of CG. However, due
to the presence of noise, the lag-one coherence drops with each iteration. The
short-lag spatial coherence (SLSC), or the area under the curve, is used to
monitor this trade-off as function of the number of iterations. SLSC reaches
its maximum at around 30 iterations of CG.

image.

B. Experimental FSA Image Reconstruction and Coherence

Experiments (Figure 2) show that direct applying REFoCUS
(iteration 1) to received channel data results in near-field
artifacts and blind spots at the edges of the field of view.
By iteration 30, all near-field artifacts have disappeared and
CG has begun to fill the blind spots. By iteration 60, we
have also improved the lateral resolution of point targets in
the medium. Figure 3 shows the spatial coherence of speckle
recovered at each step of CG. Initially, the spatial coherence
falls off rapidly as a function of lag. With each iteration
of CG, the curve spatial coherence vs. lag becomes more
triangular in shape, as expected by the VCZ theorem [6],
[7]. However, the lag-one coherence also decreases as each
iteration introduces noise into the recovered signal. In order to
quantify this trade-off, the short-lag spatial coherence (SLSC)
[6], which is simply the area under the coherence curve, was
reported at each iteration. Although SLSC imaging typically
relies on the variations in this value for contrast, we use
SLSC as a quality metric for FSA dataset recovery in a
uniformly diffuse-scattering medium. These results show that

FSA dataset recovery no longer improves beyond 30 iterations
for this particular walking aperture transmit sequence. In
general, these results imply that CG may be stopped early to
reduce computation time, and conserve signal-to-noise ratio.

V. CONCLUSIONS

Rather than directly model a single closed-form inversion
operator, our approach leverages the adjointness of REFoCUS
to recover the FSA dataset in an iterative manner. This
approach supports both time and frequency domain implemen-
tations, and can potentially reduce the computational burden
of FSA dataset recovery. Simulations demonstrate that the
iterative scheme can recover the resolution and coherence
expected in the true FSA dataset. Experiment show similar
improvements in resolution, but reveal a key trade-off between
the expected triangular shape of the coherence curve and the
lag-one coherence. By monitoring the area under the coherence
curve, we learn that CG should optimally be stopped after
a certain number of iterations in order to maximally retain
SNR and the triangularity of the spatial coherence curve. This
early stopping of CG also presents an opportunity to reduce
computation time.
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