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Abstract— Half-analytical methods are an efficient way to 
model the sound propagation. Conventionally, they are based on 
integral transform methods, where the wave equation is solved for 
a point source. Extended sources are generated by covering the 
active area with point sources and superposing their fields. For 
radial symmetric problems, the calculation effort can be reduced 
significantly by covering the active area with ring sources. The 
solution of the wave equation for a ring-like excitation is only 
known in the transformed domain. This contribution presents a 
new approach calculating Green’s function for a ring-like 
excitation by transferring approximated harmonic Green’s 
functions into time domain. The method is evaluated by comparing 
it with the emission of disc shaped source. As an example the 
method is applied to determine the uncertainty for measuring the 
sound velocity in tissue phantoms, is presented.   

Keywords—transient modelling, axial symmetry, Green’s 
functions, sound velocity measurement, uncertainty 

I. INTRODUCTION  
New ultrasound techniques work by evaluating additional 

sound field parameters besides time of flight. The development 
of such techniques requires sound field calculations to optimize 
probe parameters and to define evaluation criteria. There are 
methods to calculate the time harmonic sound field by means of 
Green’s functions combined with separation method and point 
source synthesis [1]. The transient sound field, e.g. echo signals 
for a high number of reflector positions, is calculated by 
harmonic synthesis [2]. Since the axisymmetric structure of 
applied pre-focused annular-arrays, the use of ring sources 
instead of point sources at the interface between two half-spaces 
would reduce the calculation effort. Unfortunately, Green’s 
functions for ring sources are well known only for the 
transformed domain [3].  

In this contribution, it is shown that the usual routine using a 
steepest descent approximation for the inverse transform fails 
for Greens functions of ring sources on the interface of a half-
space. Utilizing an approximated harmonic Greens function of a 
point source acting at the surface of a half- space, the field of the 
ring source can be obtained by a spatial convolution with the 
ring, which results in an integration over the angular coordinate. 

This integral is evaluated by transforming the integral into time 
domain and applying the properties of Dirac delta function. An 
approximated transient Greens function for a ring source is 
derived. For validation, the transient wave emitted by a disc-
shaped source is calculated by covering the disc with ring 
sources and superimposing the fields of all ring sources. 
Although surface waves are neglected, the signal-part of the 
longitudinal wave is in good agreement with an exact calculation 
by means of generalized ray theory using space convolution to 
the distribution of point sources.  

By means of calculated sound fields the focusing range, the 
extension of the focus area and the signals are discussed. As an 
example, the algorithm is used to determine the uncertainty of 
locally resolved measurements of sound velocity in tissue 
phantoms.   

II. DERIVATION OF GREEN’S FUNCTIONS 
Axial-symmetric problems are described by the wave 

equation in cylinder coordinates for the potential Φ (eq. 1). To 
reduce the degree of equation, the Fourier transform and the 
Hankel transform, based on Bessel functions, is applied and 
yields to equation 2.  
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 ∂2

∂𝓏𝓏2
Φ𝐻𝐻0 + (ξ2 + k2)Φ𝐻𝐻0 = 0  (2) 

This equation can be solved by a conventional exponential 
ansatz. The constants of integration are determined by applying 
the boundary conditions. For point source synthesis a normal 
force is assumed at the coordinate origin (normal stress 
component σzz,P) and for a ring-like excitation it is a line load at 
the coordinate r = a (σzz,R, see eq. 3) 

 σ𝓏𝓏𝓏𝓏,P(r) = σ0
δ(r)
2πr

     ,    σ𝓏𝓏𝓏𝓏,R(r) = σ0
δ(r−a)
2π(r−a)

  (3) 

In transformed domain, this leads to:  
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 σ𝓏𝓏𝓏𝓏,P
H0 (ξ) = σ0  ,    σ𝓏𝓏𝓏𝓏,R

H0 (ξ) = σ0J0(aξ), (4) 

with the Bessel function of first kind and first order. Further, 
the methods of Pao and Gajewski [4] can be applied to calculate 
displacements in the medium or the stress on interfaces can be 
applied also for a ring-like excitation. The terms just contain an 
additional J(aξ). Finally, an integral of the form of equation 5 
has to be solved.  

I = � F(ξ)e−j�k2+ξ2zJ0

∞

0

(rξ)J0(aξ)ξdξ (5) 

F(ξ) contains source and receiver functions depending on the 
position of the source and if there are calculated displacements 
or stresses inside a medium or on an interface. Pao and Gajewski 
used the Cagniard-de Hoop method to solve this integral. But 
here the approach of Miller-Persey [5] using a steepest descent 
approximation for the integral is applied. The naïve idea to apply 
the method directly by substituting F*(ξ) = F(ξ)J0(rξ) fails 
directly because this would result in a epicenter at the origin, but 
the epicenter has to be at the coordinate r = a.  A less common 
expression of the Bessel function (eq. 6) is needed instead. 

J0(rξ) =
1
2π

�
1

�jx2 + 2rξ

∞

0

e−x2−jrξdx        

+
1
2π

�
1

�jx2 − 2rξ

∞

0

e−x2+jrξdx 

(6) 

This form is used for both Bessel functions so their product 
results in a sum of two integrals: 

I =
1
π
�

F(ξ)
2ξ√ar

∞

−∞

e−p𝓏𝓏+j(r+a)ξ+π2ξdξ   

+
1
π
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F(ξ)
2ξ√ar

∞

−∞

e−p𝓏𝓏+j(r−a)ξ+π2ξdξ 

(7) 

So the lower term describes the wave from the coordinate 
r = a. and the upper term the wave from r = -a. This 
corresponds to the arrival times of the first and last waves as 
discussed in the following section. For each term, the steepest 
descents approximation can be applied [MP].  

I1 =
F(ξs)cosα

�2πkRa(Rsin(α) − a)
e−jkR  

+
F(ξs′ )cosβ

�2πkR′a(R′sin(β) + a)
e−jkR 

(8) 

with the wave number k and 

R = �(r − a)2 + 𝓏𝓏2  , R′ = �(r + a)2 + 𝓏𝓏2, 

      α = arctan �
r − a
𝓏𝓏

� ,     β = arctan �
r + a
𝓏𝓏

�:        

             ξs = ksin(α),                 ξs′ = ksin(β)                       (9) 

These formulas are implemented and the resulting field is 
compared with the corresponding one, gained by a point source 
synthesis. The results are shown in figure 1. Obviously, both 
fields disagree. The reason is, that the two Bessel functions had 
been approximated linearly and that the resulting deviation 
becomes too high. So an alternative approach is proposed: 

 

Fig. 1. Comparison of sound fields of a point source at r = 3 mm: calculated 
via the steepest descent approximation for the ring (left) and via point source 
synthesis (right). 

III. APPROACH USING GREEN’S FUNCTIONS OF POINT SOURCES 
Equation 10 gives the general form of a Greens function in 

frequency domain Gω and in time domain Gδ  

Gω =
S(ϕ)
2πR

ejkR,    Gδ =
S(ϕ)
2πR

δ(t −
R
c

) (10) 

R is the distance between source and observation point, S is 
the directivity pattern, determined by the boundary conditions 
and the excitation type, φ is the angle between R and the surface 
normal and c the sound velocity of the medium, longitudinal or 
transversal with the corresponding directivity pattern. Further, δ 
is the Dirac delta function. This describes the pulse response of 
on point, e.g. on a ring. To determine the pulse response of a 
ring-like line force a special convolution is necessary. Equation 
11 calculates the sound pressure for a ring with r = a at an 
observation point P(x, 0, z) see figure 2. 

p(x, 0, z) = �
ap0S(ϕ)

π�x2 + a2 + 𝓏𝓏2 − 2xacos(α) 
 

π

0

 

                    δ�t −
�x2 + a2 + 𝓏𝓏2 − 2xacos(α)

c
�dα 

(11) 

 

Due to the properties of the Dirac delta function, this integral 
can be solved by substituting  

t′ =
�(x2 − 2xacos(α) + a2 + 𝓏𝓏2)

c
 (12) 
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Fig. 2. Array with a ring source 
 

Using the step function H(t) gives:  

p(x, 𝓏𝓏) =
2ap0S(φ)�H(t − t1) − H(t − t2)�

π�4x2a2 − (x2 + a2 + 𝓏𝓏2 − c2t2)2
 (13) 

Where t1 and t2 are the arrival times of the partial waves 
starting from the points on the ring being nearest respectively 
furthest from the observation point. This supports the thesis 
discussed below equation 7 that the integral for the inverse 
Hankel transform needs two epicenters.  

t1 =
�(x2 − 2xa + a2 + z2)

c
 

t2 =
�(x2 + 2xa + a2 + z2)

c
 

(14) 

Additionally, the pressure on the acoustic axis is determined 
by:  

p(0, 𝓏𝓏) =
p0S �arccos �𝓏𝓏ct�� δ�t − √a2 + 𝓏𝓏2

c �

π√a2 + 𝓏𝓏2
 

(15) 

 

To qualify the algorithm the emitted signals from a disk 
shaped source are calculated by covering it with ring sources. 
Figure 3 shows that they are similar to the analytic solution.  

 

Fig. 3. Calculated signals for a disc source of d = 10 mm diameter for 
different depths (40 mm upper line and 60 mm lower line) and for different 
radial coordinates r; left: on acoustic axis, center: out of axis r < d/2, right: 
r > d/2; in blue: pulse response; red convolution with a signal of 3 periods 
with 3 MHz center frequency. 

To determine the necessary density of rings, figure 4 shows 
a detailed comparison for different densities. It shows that the 
distance between two rings must not be bigger than 2 μm. 

 

Fig. 4. Calculated signals for a disc source of diameter d = 10 mm for 
different densities of ring sources 

IV. APPLICATION TO CALCULATE UNCERTAINITY DURING 
TEMPERATURE MONITORING IN TISSUE PHANTOMS 

A method to monitor the temperature in tissue phantoms has 
been developed towards a temperature monitoring in tissue 
during a hyperthermia cancer therapy. It works by evaluating the 
echoes of small scatterers and allows an exact determination of 
local speed of sound instead of just evaluating relative changes 
as with conventional echo shift techniques. To measure the 
sound velocity and distance to a scatterer, synthetic focusing is 
applied and the assumed sound velocity as well as the 
corresponding focus position are varied. Analyzing the resulting 
signal amplitude gives a maximum if the correct sound velocity 
is used for focusing. A detailed description and measurement 
results are given in [6]. This contribution examined the 
reachable accuracy via simulated data.  

Assuming a reflector at a depth z = 40 mm in a medium with 
c = 1500 m/s. As mentioned, only the time of flight (53 µs) to 
this reflector can be measured. For synthetic focusing, arbitrary 
sound velocities can be assumed. For 1000 m/s the 
corresponding assumed depth for calculating the time lags 
would be 26,7 mm. Figure 5 shows the resulting pressure on the 
acoustic axis (z) for different focusing modes (F(cFok, zFok))  

 

Fig. 5. Pressure on the acoustic axis for different focussion modes 

For each focusing regime, the amplitude at the reflector 
position (40 mm, black line) is detected. It becomes much 
smaller if the assumed sound velocity differs from the sound 
velocity in the medium. Figure 6 shows the resulting signal 
amplitude as a function of the assumed sound velocity used for 
focusing. Qualitatively the resulting curve agrees very well with 
the measured one presented in [6].  

P0(x, 0, z) 

PS(a cos α, a sin α, 0) 
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Fig. 6. Resulting amplitude of reflected signal as a function of assumed 
sound velocity 

The same curves are calculated by simulation for each 
reflector position. Figure 7 shows the amplitude of reflected 
signal (color-coded) as a function of the reflector position and of 
the sound velocity used for focusing.  

 

Fig. 7. Resulting amplitude of reflected signal as a function of assumed 
sound velocity and of reflector position zMed 

Taking into account the signal to noise ratio of the measuring 
system of about 40 dB, the simulation can be used to determine 
the uncertainty of the measurements. So it cannot be 
distinguished between values bigger than 99% of the maximum. 
The resulting uncertainty as a function of measurement depth is 
shown in figure 8. 

 

Fig. 8. Resulting amplitude of reflected signal as a function of assumed 
sound velocity and of reflector position zMed 

As expected, the uncertainty increases with the measurement 
depth due to the increase of the focus area for focusing into 
greaterer depths. Furthermore, this result confirms the 
experimentally determined uncertainty of 2%.  

V. CONCLUSION 
This contribution presented a new algorithm which allows a 

fast simulation of the wave propagation in radial symmetric 
structures. For this, approximated Greens functions for a ring-
like excitation are derived. The algorithm is qualified by 

comparative calculations for the emitted signals of a disc shaped 
sound source.  

The algorithm can be used to reproduce measurement 
processes and so to find effective evaluation algorithm, to 
validate measurement results or to enhance the measurement 
accuracy.  

An example for measuring the longitudinal wave speed in 
tissue phantoms is given and the evaluation process is modelled. 
The results can be used to evaluate alternative focusing regimes 
which should result in an increased accuracy. 
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