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Abstract—Sparse arrays represent an alternative to full-

gridded arrays in 2-D probes realization. Sparse arrays have been 

used in B-mode imaging tests, but not in spectral Doppler 

measurements yet. In this paper, we have investigated, by mean of 

simulations and experiments, how the use of a sparse array instead 

of a full-gridded 2-D array impacts on spectral Doppler 

measurements. A 3 MHz, 1024-element gridded array and a sparse 

array obtained by properly selecting 256 elements from the full 

array, have been used to interrogate a parabolic flow. Simulations 

and experiments highlight that the mean Doppler frequency does 

not change by using the sparse array instead of the full one. 

Significant differences appear for the bandwidth (17.2% average 

bandwidth reduction for the sparse array), and for the signal 

power (22 dB). Possible explanations of this behavior are 

discussed. Furthermore, it is shown that the empty lines in the 2-

D array impact on the Doppler spectra, leading to sidelobes when 

steering in the direction perpendicular to such lines. 

Keywords—2D arrays, 3D imaging, sparse arrays, spectral 

Doppler measurements. 

I. INTRODUCTION 

One of the most used modalities for quantitative blood 
velocity measurements is pulsed wave spectral Doppler imaging 
[1], which analyzes echoes backscattered from one or multiple 
[2] sample volumes, contained in the scan plane. The 

development of 2-D array probes has recently extended Doppler 
investigation to a volume [3]. However, such probes are usually 
made of thousands of elements arranged on grids, and 
individually controlling all of them is quite complex. Possible 
approaches consist in using application specific integrated 
circuits (ASICs) [4] or adopting row-column addressing [5]. 
Otherwise, in sparse arrays [6], a restricted number of elements 
is spread over the probe surface according to geometries 
designed to produce the desired acoustic beam. Among many 
possibilities, these element configurations can be obtained 
through stochastic optimization processes (like simulated 
annealing) [7], or by utilizing spiral array geometries [8]. 

The main goal of this work was to evaluate at what extent 
the sparsity of probe elements impacts on spectral Doppler 
measurements. 

II. METHODS 

Simulations and experimental set-up were organized, 
including a 1024-channels system, a 1024-element 2-D probe 
and a flow phantom. 

A. 2-D array 

All tests were based on a 1024-element array probe 
(Vermon, Tours, France) with a center frequency of 3 MHz. The 
sparse array configuration was obtained from the full gridded 
probe configuration by selecting 256 elements according to the 
simulated annealing algorithm [7]. As explained in [9], the 
optimization process was exploited by controlling the pressure 
field behavior at 3 different depths. Fig. 1 shows the layout of 
the reference full gridded array (ref1024) and the sparse array 
(opti256). 
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Fig. 1. Active elements distributions used in simulations and 

experiments. The elements of opti256 (blue) were selected from those 

available on the ref1024 array (both blue and white elements). 

 

Fig. 2. Schematic of the experimental and simulation set-up. 

 

Program Digest, 2019 IEEE International Ultrasonics Symposium (IUS)
Glasgow, Scotland, October 6-9, 2019

978-1-7281-4595-2/19/$31.00 ©2019 IEEE WeI5.4



B. Simulations 

In simulations, a continuous flow was established inside a 
wall-less cylindrical vessel of 5 mm diameter and 24 mm length. 
The point scatterers had a density of 8 scatterers/mm3 and were 
moved according to a steady laminar flow with parabolic profile 
and peak velocity Vp = 40 cm/s. The pipe axis was coincident 
with the probe x-axis (Fig. 2) at za=22.5 mm depth. The pulse 
repetition frequency (PRF) was 2250 Hz. Field II [10], [11] was 
used to simulate the acoustic beams associated to the 2-D probe 
in both ref1024 and opti256 configurations. 5-cycle square 
bursts at 3 MHz were transmitted, focused on the vessel axis. In 
reception, dynamic delay-and-sum beamforming without 
apodization was used. Three steering configurations were tested: 
0°, 8° and 16° for both the probe orthogonal planes (xz and yz). 
For steering within the yz plane, the probe was rotated to 
maintain the vessel axis parallel to the probe y-axis. Two 
additional element distributions were simulated (ref1120 and 
opti256 v2, showed in Fig. 3) to check the effects of the three 
empty lines in the Vermon probe on the final Doppler spectra. 

C. Experiments 

In the experiments, four Vantage 256 systems (Verasonics, 

Kirkland, USA) were synchronized to simulate a 1024-channels 

system [12]. The scanner channels were individually linked to 

the 1024 elements of the 2D probe and programmed to control 

the two different sets of element distributions shown in Fig. 1. 
The transmission modalities were the same used in 

simulations. In reception, dynamic focusing without dynamic 
apodization was used. In each acquisition, raw echo data were 
stored for a time interval ΔT=0.89 s at PRF = 2250 Hz. 

Experiments were based on a Doppler 403 Flow Phantom 
produced by Gammex (Middleton, WI, USA), which includes a 
5-mm diameter vessel surrounded by a tissue mimicking 
material. A blood mimicking fluid was pumped at 4 ml/s steady 
rate. Tests were made using the same steering angles used for 
simulations. In all acquisitions, attention was paid to keep 
identical set-up conditions for consecutive measurements using 
ref1024 and opti256 array configurations.  

D. Processing and performance metrics 

Simulated and experimental radio-frequency echo data 
received from active elements were beamformed off-line, 
quadrature demodulated, and low-pass filtered using the 
MATLAB (The MathWorks, Natick, MA) software. The “slow-
time” complex samples extracted from each depth (i.e., 
commonly named Doppler signals), were gathered into 
overlapping 128-point blocks, each weighted using Blackman-
Harris windowing, and then converted to the frequency domain 
by 128-point FFT. Finally, all the spectra computed for each 
depth, were averaged. 

Fig. 4 shows a sample averaged multi-gate spectral profile 
obtained in simulation with 16° steering angle on the xz plane. 
The profile shows the power spectral densities detected between 
19 and 26-mm depth. The density of each spectrum is coded 
according to the color legend on the right.  

For every simulated or experimental Doppler spectrum, the 
mean frequency (Fm), -6dB bandwidth (BW) and signal power 
(Ps) were evaluated (Fig. 5). Only for experimental data also the 

 
Fig. 4. Example of multi-gate spectral profile obtained in simulation 

with ref1024 producing a beam steered by 16° on the xz plane. 

 
Fig. 5.  Sample experimental Doppler spectrum obtained with ref1024 

transmitting an unsteered beam. The figure shows how the spectral 

parameters (fm, BW, Ps and noise) were evaluated. 

 

  
Fig. 3. Active elements distributions used in simulations only. The 

elements of opti256 v2 (red) were selected from those available on the 

ref1120 array (both red and white elements). 
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signal-to-noise ratio (SNR) was assessed. Ps was evaluated as 
the integral of the power spectral densities higher than a heuristic 
threshold (set at -15 dB) reasonably higher than the encountered 
system noise. As observed in the experimental outcomes, the 
noise could be assumed as white; hence, its power could be 
estimated considering the frequency range [–PRF/2 –PRF/4] 
that, in all experiments, did not enclose important signal 
contributions. 

In each simulation/experiment, the aforementioned spectral 
parameters were estimated for the time-averaged spectra 

obtained at each of 11 depths spaced ≈ 0.3 mm apart (see dotted 

lines in Fig.4). These depths are in the vessel central zone where 
flow velocities are clearly higher than zero. 

For each depth, the (relative) differences of parameters 
obtained using ref1024 and opti256 were calculated as: 

 ∆𝐹𝑚 =
𝐹𝑚𝑜𝑝𝑡𝑖256 − 𝐹𝑚𝑟𝑒𝑓1024

𝐹𝑚𝑟𝑒𝑓1024

 (1) 

 ∆𝐵𝑊 =
𝐵𝑊𝑜𝑝𝑡𝑖256 − 𝐵𝑊𝑟𝑒𝑓1024

𝐵𝑊𝑟𝑒𝑓1024

 (2) 

 ∆𝑃𝑠 =
𝑃𝑠𝑜𝑝𝑡𝑖256

𝑃𝑠𝑟𝑒𝑓1024
 (3) 

 ∆𝑆𝑁𝑅 =
𝑆𝑁𝑅𝑜𝑝𝑡𝑖256

𝑆𝑁𝑅𝑟𝑒𝑓1024
 (4) 

For each set-up condition, the average value and the 
associated standard deviation (SD) were evaluated over the 11 
depths. The parameters estimated in simulations according to the 
described procedure are reported in Table I. 

III. RESULTS AND DISCUSSION 

The results in Table I indicate that sparsity does not impact 
mean Doppler frequency, as confirmed by Figures 6-7-8. On 
average: for Fm, the difference between ref1024 and opti256 
was 0.5%. Conversely, the Doppler bandwidths detected using 
opti256 are narrower by 17.2%, in average, with respect to the 
ref1024 ones. This is explained looking at the different 
equivalent apertures, A, of the two arrays, which involve 
different Doppler bandwidths [13]. Approximating it as two 
times the mean distance of each element from the probe center, 
A resulted 6 and 7.8 mm for opti256 and ref1024, respectively. 
The ratio between the two apertures (77%) is well consistent 
with the bandwidth reduction (17.2%, on average) for opti256. 

 

 

Fig. 7. Examples of experimental Doppler spectra obtained for the two 
probe configurations when the flow phantom was intercepted by US beams 

produced with 0° (top) and 16° (bottom) steering angles in xz plane. 

TABLE I. SIMULATION PERFORMANCE METRICS 

Steering [°] opti256 vs ref1024 

xz yz 
ΔFmµ ± SD 

 [%] 

ΔBWµ ± SD 

 [%] 

ΔPsµ ± SD 

 [dB] 

0 0 -a -23.5±6.3 -22±0.08 

8 0 -0.8±1.7 -19.5±5.4 -22±0.11 

16 0 -0.7±1.2 -16±7.9 -21.9±0.04 

0 0 -a -15.2±6.5 -22.2±0.48 

0 8 1.8±1.9 -15.2±3.1 -22±0.25 

0 16 1.5±1.8 -13.5±5.2 -21.9±0.23 

Average: 0.5±1.6 -17.2±5.7 -22±0.20 

a. ΔFm not evaluated because the nominal Doppler shift value is here zero  

 

 

Fig. 6. Examples of simulated Doppler spectra obtained for the two 
probe configurations at 0° (top) and 16° (bottom) steering angles in xz 

plane. 
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The main difference between the results obtained with 256 
or 1024 elements is associated with the signal and the noise 
power. Using the same TX voltages, we expect 24 dB difference 

between ref1024 and opti256 signal power. Ps was actually 
reduced by 22 dB in opti256. On the other hand, the number of 
channels that contribute to the received noise is 4-times larger 
for ref1024, i.e., noise is here 6 dB higher. The experimental 
results (16.8±0.5 dB) look consistent with the expected 24-6=18 
dB of SNR degradation. Finally, when the beam was steered on 
the yz plane, low sidelobes (<-25 dB) appear for ref1024 and 
opti256 (see Fig. 8). The simulations done with ref1120 and 
opti256 v2 demonstrate that these sidelobes are associated to the 
three missing lines on y-direction. 
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Fig. 8. Doppler spectra comparison between  probe configurations with 

(Fig. 1) and without (Fig. 3) empty lines: obtained at 8° (the two at the 

top) and 16° (the two at the bottom) steering angles in yz plane. 

Program Digest 2019 IEEE IUS
Glasgow, Scotland, October 6-9, 2019

WeI5.4


