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Abstract—Breast ultrasound is gaining interest as an alter-
native to mammography. To improve its diagnostic value, full
waveform inversion methods are developed. These methods aim
for reconstructing speed of sound maps of the breast. When the
inversion is performed in the frequency domain, computation
time is reduced by limiting the number of frequency components
at the cost of retrieving noisy images. To compensate for the
lack of frequency information and to reduce the noise in the
reconstruction, we propose two solutions. First, we select the
frequency components randomly out of the entire available
bandwidth for each source-receiver combination separately. Next,
a regularization method is applied that takes advantage of the
sparseness of the reconstructed contrast in the wavelet domain.

Index Terms—wavelet regularization, Born inversion, breast
ultrasound

I. INTRODUCTION

Breast cancer is the most frequently diagnosed cancer
among women. Detecting it at an early stage enables to signif-
icantly reduce the mortality rate [1]. Currently, mammography
is the gold standard for screening. Unfortunately, it has some
disadvantages, among which the difficulty to scan women with
dense breasts. Ultrasound is a promising alternative enabling
safe and fast diagnosis [2]. To ease the differention between
malignant and benign tissues, waveform inversion methods
have become of interest. With these methods speed of sound
profiles of the breast are reconstructed [3].

When applying waveform inversion in the frequency do-
main, special attention is given to the selection of frequency
components. It is common practice to select only a limited
number of frequency components from the available band-
width to reduce computation time [4], [5]. Another common
practice is reffered to as frequency-hopping [6], which may
be useful to avoid local minima.

To improve on convergence, regularization is employed
when solving the inverse problem. The most common reg-
ularization techniques are related to the total variation [7] in
and sparsity [8] of the reconstruction. Regularization is an
important tool to stabilize the inversion.

In this work, regularized frequency domain Born inversion
is investigated [9], [10]. To improve its convergence, the
frequencies used for the inversion are chosen randomly over
the available bandwidth for each source receiver combination,
at the expense of additional noise in the reconstruction. To
regularize the inverse problem and to reduce the amount of

noise in the reconstruction, the sparsity constraint for the
reconstruction in the wavelet domain is utilized. To test and
validate Born inversion in combination with sparsity based
regularization, a study has been performed using synthetic and
real data.

II. THEORY

The acoustic pressure field p(x, ω), where x denotes a
position in the two-dimensional spatial domain D and ω is the
angular frequency, can be decomposed into an incident field
pinc(x, ω) that is generated by the source and propagates in
the homogeneous embedding, and a scattered field psct(x, ω)
that equals

psct(x, ω) = ω2

∫
x′∈D

G(x− x′, ω)χ(x′)p(x′, ω)dV, (1)

where G(x − x′, ω) is the Green’s function and χ(x′) is the
contrast function given by

χ(x′) =
1

c2(x′)
− 1

c20
, (2)

where c(x′) and c0 are the speed of sound of the actual
medium and of the homogeneous embedding respectively.
Under the weak scattering approximation, the pressure field
inside integral equation (1) can be replaced by the incident
field, hence

psct(x, ω) = ω2

∫
x′∈D

G(x′ − x′, ω)χ(x′)pinc(x′, ω)dV. (3)

This linearisation is known as the Born approximation. The
unknown contrast function χ(x′) can be found by solving the
minimization problem

minχ ‖d−M[χ]‖2 , (4)

where d is the measured scattered field and M is an operator
representing integral formulation (3). To find the contrast
function χ(x′), (4) is minimized using an iterative optimization
method [9].

A. Frequency Selection

The minimization problem in (4) can be solved for different
frequencies independently. In this work, we randomly select
a unique set of frequencies for each source-receiver combi-
nation. By doing this, the computation time is reduced and
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information from the entire available bandwidth is included in
the reconstruction. However, limiting the total amount of data
used for the reconstruction leads to an increase of the amount
of noise in the reconstruction.

B. Wavelet Regularization

Wavelet regularization is used to filter the noise introduced
by the random frequency selection. This noise has no spatial
correlation and is represented by many coefficients with low
intensity in the wavelet domain. At the same time, the image is
often structured and may well be represented with only a few
coefficients with a high amplitude in the wavelet domain. By
applying a hard threshold in the wavelet domain, it is possible
to filter out the noise. With the thresholding constraint, the
minimization problem of interest becomes

minχ ‖d−M[χ]‖2 s.t. ‖ψ[χ]‖0 < α, (5)

where ψ is the wavelet transform and α is the threshold value.

III. RESULTS

A. Configuration

To acquire real data, four Philips P4-1 probes connected to a
Verasonics Vantage 256 device are used. Each probe contains
a linear array of 96 elements and is fixed in a holder during
the measurement. The water tank has dimensions of 45 mm×
45 mm and contains an agar based phantom [11]. The phantom
has dimensions of 26 mm× 29 mm and includes holes with
diameters of 2 mm, 3 mm and 4 mm, see Fig. 1.

First, an empty measurement, where the tank is only filled
with water, is done to calibrate the system. From this empty
measurement the incident field and the excitation pulse is
retrieved. The excitation pulse has a center frequency of
1.5 MHz. The measured wavelet and its spectrum are shown
in Fig. 2. Next, a measurement with the phantom placed in
the tank is done. The scattered field is obtained by subtracting
the empty measurement from the phantom measurement.

A synthetic data set is generated by using a forward mod-
elling method based on a frequency domain integral equation
formulation [12]. The synthetic setup is designed to mimic
the real measurement setup. The synthetic data is useful to

Fig. 1. Measurement setup.

Fig. 2. Source excitation profile in time (left) and frequency (right) domain.

evaluate the reconstruction method as it represents the ideal
noise-free data for which the ground truth is known.

B. Randomizing

Within a predefined bandwidth, the same number of fre-
quency components is randomly picked for each source-
receiver combination. In the end, all frequencies from the
available bandwidth are used in the same proportion. This is
different from the commonly applied selection method, where
the same frequency components are selected for all source-

Fig. 3. Difference between linear and random selection of the frequencies.
For both reconstructions only 10 frequency components from the available
synthetic data are used, with synthetic data and only reflection signals. (Left)
the ten frequency components are selected out of the same narrow band (0.9
- 1.05 MHz) for all source-receiver combination. (Right) the ten frequency
components are selected randomly for each source-receiver combination out
of the available bandwidth (0.7 - 2.2 MHz). (Bottom) histogram of frequency
selection for both approaches.
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Fig. 4. Structure of the wavelet transform (left) and wavelet transform of
Lena at level 2 using Daubechies 4 wavelet (right).

receiver combinations. Unfortunately, the latter technique does
not allow for a wide coverage of the available bandwidth
leading to a reconstruction of lower quality. Fig. 3 shows
the difference in the reconstruction for those two techniques.
Although the amplitudes of both images are not the same,
the reconstruction with the random frequency selection has
a better quality, it has sharper edges and shows less ringing
effect and therefore leads to a better reconstruction of the
holes. Fig. 3 also shows a histogram of the selected frequencies
for the two methods.

C. Wavelet Regularization

A wavelet transform example is presented in Fig. 4. Here a
two-level wavelet transform is performed on the well known
Lena image using the commonly used Daubechies 4 wavelet.
The first level gives four images of half the size of the initial
image, which are the approximation (A1), horizontal (H1),
vertical (V1) and diagonal (D1) details. To achieve a higher
level decomposition the same scheme is applied on A1, to give
A2, H2, V2, and D2. Fig. 4 presents the layout of those details.
As can be seen the discrete wavelet transform is a one-to-one
transformation, which means that the number of elements is
conserved throughout the transformation. A majority of the
coefficients have low amplitudes. Consequently, the informa-
tion contained in the original image in the Cartesian domain
is represented by only a few dominating coefficients in the
wavelet domain. This is important for the use of this basis as
a regularization tool.

D. Born Inversion Results

Born inversion with and without wavelet regularization are
tested on synthetic and real data and compared with each other.
The results are presented for reflections and transmissions
measurements separately. A reflection image is produced by
using only the data received by the probe containing the
source. A transmission image is created from data received
by the probe facing the source. All images are the result of
Born inversion for ten frequencies randomly picked out of the
bandwidth 0.7 - 2.2 MHz, and 16 iterations.

Results obtained with Born inversion with the synthetic
data-set are presented in Fig. 5. The color scale is the same
for all images. The regularization method does not change

Fig. 5. Born inversion results for synthetic data-set. The first row shows the
reconstruction obtained with reflection measurement. The second row shows
the reconstruction obtained with transmission measurement.

the shape of the phantom but it does change the contrast and
therefore the amplitude of the reflections. This phenomena
does not appear in the reconstruction using transmission data
only, where it would lead to errors in the speed of sound recon-
struction. The thresholding method clearly denoises the image
without affecting the shape of the phantom. Only the highest
2% of the coefficients have been used. This thresholding is
performed from the 7th iteration onwards. In this way a good
estimation of the reconstruction is obtained before applying a
regularization which may change the shape of the contrast.

The reconstructions for measurement data are presented in
Fig. 6. The colorbars are different for the two reconstructions
to enhance the main characteristic of each reconstruction.
With Born inversion without regularization, the contrast of the
boundary of the holes is low and it is hard to distinguish them.
With the regularized Born inversion method the holes become
clearly visible. After thresholding, the noise is reduced with
the boundaries preserved.

Fig. 7 shows the result of Born inversion with a varying
proportion of coefficients being retained. The performance of
the denoising process is optimal when the noise is reduced
while the structure of the object remains unchanged.

IV. CONCLUSION

A new method to improve the performance of Born inver-
sion is presented. It combines random frequency selection with
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Fig. 6. Born inversion results for real measurement data. The reconstructions
are obtained with reflection measurement.

hard thresholding of the contrast in the wavelet domain. The
method has been successfully tested on both synthetic and
real measurements and shown to reconstruct the object with a
better accuracy than traditional Born inversion.

Although not tested, proposed methods are expected to work
especially well in combination with interface contrast imaging
which aims for reconstructing reflectivity images [13], [14].

Fig. 7. Comparison of the results of Born inversion for different percentages
of the coefficients retained.
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