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Abstract—Super-resolution imaging (SRI) can achieve sub-
wavelength resolution by detecting and tracking intravenously
injected microbubbles (MBs) over time. However, current SRI is
limited by long data acquisition times since the MB detection still
relies on diffraction-limited conventional ultrasound images. This
limits the number of detectable MBs in a fixed time duration. In
this work, we propose a deep learning-based method for detecting
and localizing high-density multiple point targets from radio
frequency (RF) channel data. A Convolutional Neural Network
(CNN) was trained to return confidence maps given RF channel
data, and the positions of point targets were estimated from the
confidence maps. RF channel data for training and evaluation
were simulated in Field II by placing point targets randomly
in the region of interest and transmitting three steered plane
waves. The trained CNN achieved a precision and recall of 0.999
and 0.960 on a simulated test dataset. The localization errors
after excluding outliers were within ± 46µm and ± 27µm in the
lateral and axial directions. A scatterer phantom was 3-D printed
and imaged by the Synthetic Aperture Real-time Ultrasound
System (SARUS). On measured data, a precision and recall of
0.976 and 0.998 were achieved, and the localization errors after
excluding outliers were within ± 101µm and ± 75µm in the
lateral and axial directions. We expect that this method can be
extended to highly concentrated microbubble (MB) detection in
order to accelerate SRI.

I. INTRODUCTION

Super-resolution imaging (SRI), often referred to as ultra-
sound localization microscopy (ULM), has demonstrated that
it is possible to surpass the diffraction limit of conventional
ultrasound imaging. Microvessels laying closer than a half-
wavelength apart have been resolved by deploying microbub-
bles (MBs) as a contrast agent and using SRI [1]–[5]. The
centroids of individual MBs can be easily found as MB echoes
are much stronger than surrounding tissues when insonified,
and their sizes are much smaller than a wavelength. Sub-
wavelength imaging is achieved by accumulating the detected
MB positions over time, revealing the fine structure of the
microvasculature.

The MB detection in SRI, however, is still diffraction-
limited because it is performed in conventional ultrasound
images which are commonly formed by delay-and-sum (DAS)
beamforming [6]. For accurate and reliable detection and
localization, the MBs need to be more than a wavelength apart
to avoid the overlaps of MB point spread functions (PSFs).
Diluted concentrations of MBs are commonly used to satisfy
this criteria as the behavior of MBs is hard to control. The
number of detectable MBs, therefore, is constrained and this

leads to very long data acquisition times in order to map the
entire microvasculature.

In this work, we propose a deep learning-based method for
detecting and localizing multiple ultrasound point targets. The
method especially aims to identify high-density point targets
whose PSFs are overlapping, by feeding radio frequency (RF)
channel data directly as input. A fully convolutional neural
network (CNN) was designed to return 2-D confidence maps
given RF channel data. The pixel values of the confidence
maps correspond to the confidence of point targets existing
in the pixels. The point target positions were extracted from
the confidence maps by identifying local maxima. The CNN
was trained and evaluated using simulated RF channel data.
To further investigate the method on measured data, a phan-
tom experiment was performed using a 3-D printed PEGDA
700 g/mol hydrogel phantom [7].

II. METHOD

A. Simulated Dataset

1) RF channel data: The Field II ultrasound simulation
program [8], [9] was used to simulate RF channel data for
generating a training and a test datasets. The datasets were
composed of a certain number of frames. One frame was
created by transmitting three steered plane waves after placing
100 point targets randomly within a region of 6.4× 6.4mm2

(an average target density of 2.44mm−2) where the center was
18mm away from a transducer. The transducer was modeled
after a commercial 192-element linear array, and the measured
impulse response [10], [11] was applied to make the RF data
as close to real measured data as possible. The parameters
used in simulation are listed in Table I.

The simulated raw RF data were not beamformed but
delayed, based on the time-of-flight calculated by

τi(x, z) =

(√
(x− xi)

2
+ z2 + z

)
/c (1)

where τi is the time-of-flight of the i-th transmission, (x, z) is
the point, xi is the center of the i-th transmission aperture,
and c is the speed of sound. The delayed RF data were
then sampled to have the same number of samples as that of
confidence maps along the axial direction. The size of resulting
RF data for one frame was 256× 64× 3.
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TABLE I
RF CHANNEL DATA SIMULATION PARAMETERS

Category Parameter Value
Transducer Center frequency 5.2MHz

Pitch 0.20mm
Element width 0.18mm
Element height 6mm
Number of elements 192

Imaging Number of TX elements 32
Number of RX elements 64
Steering angles −15◦, 0◦, 15◦

Environment Speed of sound 1480m/s
Field II sampling frequency 120MHz
RF data sampling frequency 29.6MHz

Scatterer Number of scatterers 100
Lateral position range (−3.2, 3.2)mm
Axial position range (14.8, 21.2)mm

2) Confidence Map: Non-overlapping Gaussian confidence
maps were used as labels for training CNNs. Initially, binary
confidence maps were created, where pixel values of one
indicated a point target and the remaining pixel values were
zero. A 21 × 21 Gaussian filter with a standard deviation of
six was then applied at each point target position in the binary
confidence maps. The filter values from the targets will be
overlapped when some targets are closer than a half of the
filter size in the confidence maps. In that case, the maximum
value at each pixel location was taken. This maintained local
maxima at target positions as opposed to the overlapping PSFs
of DAS beamforming, and enabled the CNN to resolve targets
closer than the diffraction limit.

The pixel size of the confidence maps was set to 25 µm,
and the image size of them became 256×256, given the pixel
size and the region of interest.

B. Convolutional Neural Network

1) Network Architecture: The proposed CNN is adapted
from U-Net [12] which has an encoder-decoder structure. The
feature maps are downsampled while the number of feature
maps increases in the encoding path. Then, the feature maps
are upsampled to their original size while the number of
feature maps decreases in the decoding path. U-Net has a
large receptive field, an effective input size that is covered
by a convolution operation in an unit, for the sake of this
structure. This is beneficial because a partial view of RF data
is not enough to determine point target existence.

A detailed CNN architecture is illustrated in Fig. 1. Con-
volution and rectified linear unit (ReLU) layers in U-Net
were replaced with pre-activation residual units (Fig. 1a) [13].
The pre-activation residual units ease optimization problem
by introducing shortcuts, thereby improving performance. The
proposed CNN (Fig. 1e) mainly consisted of four down-
blocks (Fig. 1b), one conv-block (Fig. 1c), and four up-blocks
(Fig. 1d). The skip-connections in U-Net was removed since it
hindered the training. Instead, CoordConv [14] was added to
transfer spatial information over convolution layers. Dropout
[15] was attached after the shortcut in residual blocks for regu-
larization. For pooling and unpooling, strided convolution and

pixel shuffle [16] were chosen, respectively. Leaky rectified
linear units (Leaky ReLU) [17] were applied as non-linear
activation to avoid dying ReLU problem causing nonactivated
units.

2) Training Details: The CNN was trained by minimizing
the mean squared error (MSE) between true confidence maps
and CNN outputs. The training dataset consisted of a total
of 10, 240 frames. The kernel weights were initialized with
orthogonal initialization [18] and optimized with ADAM [19]
by setting β1 = 0.9, β2 = 0.999, and ε = 10−7. The initial
learning rate was 10−4 and it was halved at every 100 epoch
while limiting the minimum learning rate to 10−6. The number
of epochs was 600 and the mini-batch size was 32.

C. 3-D Printed Scatterer Phantom

A PEGDA 700 g/mol hydrogel scatterer phantom [7] was
3-D printed to investigate the proposed method on measured
data. The phantom contained water-filled cavities which acted
as scatterers. A total of 100 scatterers were placed on a 10×10
grid with a spacing of 518 µm in the lateral direction and
342 µm in the axial direction, as illustrated in Fig. 2.

The 3-D printed phantom was scanned by the Synthetic
Aperture Real-time Ultrasound System (SARUS) [20] to
acquire RF channel data. The same imaging scheme and
transducer described in Table I were used. The phantom was
placed on a motion stage and scanned at different positions
by moving the motion stage at a step of 50 µm in the lateral
direction. A total of 33 frames were obtained.

III. RESULTS

A. Simulation Experiment

The trained CNN was initially evaluated on a simulated
test dataset. It was simulated in the same way as the training
dataset in Field II, and consisted of 3,840 frames. In Fig. 3, the
result of applying the CNN method to a test frame is compared
with simply using the conventional DAS beamforming on the
same frame. The CNN method was able to identify highly
concentrated point targets while the DAS beamforming failed
due to the overlapping PSFs. Full width at half maximum
(FWHM) of the DAS beamforming at a depth of 18 mm was
387 µm (1.36 λ) in the lateral direction and 140 µm (0.49 λ)
in the axial direction.

The CNN’s capability to detect and localize point targets
were quantitatively evaluated. Detection was measured by
precision and recall that are defined by

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.
The positive and negative detections were determined by
comparing estimated target positions with true target positions
based on their pair-wise distances. The CNN method achieved
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Fig. 1. The proposed CNN architecture and its components. (a) residual unit, (b) down-block, (c) conv-block, (d) up-block, and (e) the network overview.
n and s in the parenthesis are the number of kernels and stride. The asterisk in (e) indicates that its first convolution in the block is CoordConv. The three
numbers between blocks in (e) represent feature map size in the order of height, width, and the number of feature maps.
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Fig. 2. Fabricated 3-D scatterer phantom: (a) photograph of the phantom and
(b) 100 scatterers placed in a 10× 10 grid.

a precision and recall of 0.999 and 0.960, while DAS beam-
forming achieved a precision and recall of 0.986 and 0.756.

Localization uncertainties in the lateral and axial position
were calculated using the positive detections, and is illustrated
using a box-and-whisker plot in Fig. 4a. The bottom and
top edges of the blue box indicate the 25th (q1) and 75th
percentiles (q3) and the center red edge indicates the median.
The vertically extended line from the box (whisker) indicates
the range of inliers which are smaller than q3+1.5×(q3−q1)
and greater than q1 − 1.5× (q3 − q1). The inliers were within
±46 µm (0.16λ) in the lateral direction and ±27 µm (0.09λ)
in the axial direction.

B. Phantom Experiment

The CNN trained for the simulation experiment was not
effective on the measured data because the scatterers in
the phantom are not infinitesimally small point targets. The
ultrasound beam is actually scattered twice at each scatterer
in the phantom. Therefore, the RF data in the training dataset
were simulated a second time by modeling a target using two
points. In addition, the first scattering was phase reversed since
the acoustic impedance is higher in the phantom than in the
water inside the targets.

A new CNN was trained using the modified training dataset,
and it successfully identified scatterers from the measured data

(a) (b)

(c) (d)

Fig. 3. Comparison of point target detection between DAS beamforming and
CNN on a simulated test data using three steered plane wave transmissions.
(a) DAS beamformed B-mode image, (b) confidence map returned from CNN,
(c) true and estimated scatterer positions in the green square region of (a),
and (d) true and estimated scatterer positions in the green square region of
(b)

as shown in Fig. 5. The achieved precision and recall were
0.976 and 0.998. The inliers were within ±101 µm (0.33λ) in
the lateral direction and ±75 µm (0.25λ) in the axial direction,
as illustrated in Fig. 4b.

IV. CONCLUSION

A CNN-based ultrasound multiple point target detection and
localization method was demonstrated. The CNN was trained
to learn a mapping from RF channel data to non-overlapping
Gaussian confidence maps, and point target positions were
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(a) (b)

Fig. 4. Localization uncertainty in the lateral and axial direction measured
(a) on the simulated test dataset and (b) on the measured phantom data.

(a) (b)

Fig. 5. Comparison of scatterer detection between DAS beamforming and
CNN on phantom data using three steered plane wave transmissions. (a) DAS
beamformed B-mode image and (b) confidence map returned from CNN with
true and estimated scatterer positions

estimated from the confidence maps by identifying local
maxima. The non-overlapping Gaussian confidence maps were
introduced to relax the sparsity of binary confidence maps
while maintaining local maxima as target positions. The CNN
method resolved point targets closer than the diffraction limit,
whereas DAS beamforming failed as shown in Fig. 3.

It is also shown that the CNN method is applicable to real-
world data, as well as simulated data, through the phantom
experiment. It is notable that the training was performed
solely using simulated data because it is nearly impossible
to obtain a large number of measurements with ground truth
for these kinds of work. It was also imperative to employ
the measured impulse response and model targets following
realistic physical modeling in the simulation.

We expect that this method can be extended to MB detection
and potentially shorten the data acquisition time of SRI by
detecting a greater number of MBs in a shorter amount of
time.
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