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Abstract—Tissue elasticity can be locally estimated using shear-
wave elastography (SWE), an advanced technique that measures
the speed of laterally-traveling shear waves induced by a sequence
of acoustic radiation force “push” pulses. However, SWE is
not available on all ultrasound machines due to e.g. power,
equipment, and procedural requirements; in particular, wireless
devices would face challenges delivering the required power. Here,
we propose a fully-convolutional deep neural network for the
synthesis of an SWE image given the corresponding B-mode
(side-by-side-view) image.Fifty patients diagnosed with prostate
cancer underwent a transrectal SWE examination with SWE
imaging regions chosen such that they covered the entire or
parts of the prostate. The network was trained with the images
of 40 patients and subsequently tested using 30 image planes
from the remaining 10 patients. The neural network was able to
accurately map the B-mode images to sSWE images with a pixel-
wise mean absolute error of 4.8 kPa in terms of Young’s modulus.
Qualitatively, tumour sites characterized by high stiffness were
mostly preserved (as validated by histopathology). Despite the
need for further validation, our results already suggest that
deep learning is a viable way to retrieve elasticity values from
conventional B-mode images and can potentially provide valuable
information for cancer diagnosis using devices on which no SWE
imaging is available.

Index Terms—Deep Learning, B-mode Ultrasound, Shear-Wave
Elastography, Convolutional Neural Networks

I. INTRODUCTION

Imaging of tissue elasticity plays a significant role in several
applications such as the characterization of prostate cancer
[1], liver lesions [2], thyroid nodules [3], breast lesions [4],
and the investigation of musculoskeletal abnormalities [5]. In
recent years, a number of ultrasound-based technique have
been developed to assess tissue elasticity, ranging from quasi-
static ultrasound strain imaging using the probe as manual
pressure source to more advanced dynamic elastography in
which “push” pulses are used to apply stress [6]. Shear-wave
elastography (SWE) [7] and acoustic radiation force imaging
(ARFI) [8] are examples of the latter category of elastography
techniques. By assessing the tissue displacement in response
to the “push” pulse, these methods can map the local Young’s
modulus of tissue operator-independently.

SWE has shown promising results in numerous biomedical
fields, but it remains dependent on ultrafast imaging
schemes (i.e. frame rates >1000 Hz), requires well-equipped
transducers, and operators have to be aware of the settling
times needed for the generation of reliable elastograms [9],

[10]. Therefore, we propose the use of deep learning [11]
to infer the elastograms from standard B-mode ultrasound
images. The resulting synthetic SWE (sSWE) images can
possibly be used for elasticity-like tissue typing.

II. MATERIALS AND METHODS

A. Regression network architecture

A convolutional neural network was designed and trained
to generate sSWE images using B-mode images as input. For
this, an encoding architecture has been adopted comprising
3×3-convolutional layers interspersed with 3 max-pooling
operations, followed by an inverse decoding architecture. Skip
connections were constructed to avoid loss of resolution and
vanishing gradients [12], and leaky rectified linear units were
implemented to also mitigate the problem of vanishing gradi-
ents, and to prevent nodes from settling with zero weight [13].
The final output layer consisted of a sigmoid function that
mapped the network output to normalized Young’s moduli, as
it is most sensitive around 0.5 and thus to the SWE values in
the clinically-relevant range for our application [14].

The weights in network were trained in mini-batches using
the Adam stochastic optimization method [15], employing the
root-mean-square error as the loss function being minimized.
The training phase was optimized by choosing a relatively
small mini-batch of 64 size and the application of a adaptive
learning rate reduction strategy based on the loss reaching
a plateau. Data augmentation [16] and drop-out layers [17]
were implemented to aid the training generalizability.

B. Data acquisition

For this study, we collected the SWE images of 50 prostate-
cancer patients at the Martini Clinic in Hamburg, Germany.
Using an AixplorerTM (SuperSonic Imagine, Aix-en-Provence,
France) equipped with an SE12-3 probe, at least 3 full-prostate
images per patient were obtained, in the base, mid, and apex
sections of the prostate. The Young’s modulus and correspond-
ing confidence maps were extracted from the imaging, along
with the side-by-side-view B-mode images of the same region.
These images were subsequently normalized for the analysis.
Imaging of the first 40 patients was used to train the network,
whereas the images of the 10 remaining patients served as
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Fig. 1: Examples from five test patients, with (above) the B-mode ultrasound image, (middle) the shear-wave elastographic
acquisition, and (below) the corresponding synthetic SWE image by deep learning.

the test set. The mean absolute error over all pixels with an
SWE estimate of sufficient quality (i.e., confidence: >75%)
was used as the primary performance measure.

III. RESULTS

Obtaining a mean absolute error of 4.8 kPa in Young’s
modulus, the sSWE procedure was shown able to replicate
SWE elastograms with an error below 10% of the elasticity
values normally found in the prostate [14]. In Fig. 1, SWE
and sSWE imaging of 5 test-set patients are shown.

IV. DISCUSSION AND CONCLUSION

In this work, a deep-learning network is proposed that is able
to perform elasticity-like characterization based on conven-
tional B-mode acquisitions. Trained and tested with imaging of
the prostate, sSWE was shown to replicate SWE elastograms
with good agreement. These results are an indication that there
might be a link between the echogenic patterns as encountered
in B-mode imaging and the elasticity as assessed during SWE.

The major benefit of sSWE is in that it alleviates the need
for high-end ultrasound equipment and can be used in devices
that do not meet standard SWE requirements. Moreover, sSWE
can be performed retrospectively, reducing procedure times.
In the future, sSWE could for example serve as a quick way
to add clinically-valuable information on prostate tissue to a
multiparametric ultrasound imaging approach of e.g. prostate
cancer [18]. Moreover, elasticity-related properties such as
viscoelasticity [19], [20] could be considered as a potential
secondary output of an sSWE network.

The current study is limited by the relatively small dataset.
Therefore, it remains to be investigated how generalizable
these results are with looser standardization of imaging,
when employed in other organs, or performed using other
ultrasound scanners. Although we strive to validate our
algorithm in a larger, preferably multicentre dataset to
ensure generalizability, our results demonstrate the technical
feasibility and promise of SWE elastogram synthesis based
on regular B-mode ultrasound.
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