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Abstract—Prostate cancer (PCa) is the second leading cause
of cancer mortality in men in western countries. Tumor-driven
angiogenesis is a recognized hallmark of cancer. Typical features
of angiogenic vasculature include increased microvascular density
(MVD), smaller vessel diameter and higher tortuosity, resulting
in complex blood-flow patterns. Dynamic contrast-enhanced ul-
trasound (DCE-US) widely provides a noninvasive diagnostic tool
for PCa detection with the passage of ultrasound contrast agents
(UCAs) through the prostate. Analysis of the UCA dispersion
kinetics in the tumor vasculature has shown promise for PCa
diagnostics, but a clear link between the estimated kinetics
parameters and the underlying microvascular structure is still
lacking. In this work, modeling the prostate microvasculature
as a porous medium, we developed tissue-mimicking phantoms
with variable pore size, representing different MVD and vessel
diameter. The UCA flow through the phantoms was recorded
by DCE-US, and UCA velocity and dispersion coefficient were
estimated by model-based deconvolution. In general, phantoms
reproducing increased MVD and smaller vessel diameter lead to
increased velocity and decreased dispersion coefficient. This is
line with our in-vivo findings in PCa patients. Further validation
will be performed by in-silico simulation and more complex in-
vitro phantoms in the future.

Index Terms—prostate cancer, dynamic contrast-enhanced ul-
trasound, flow dynamics, tumor-driven angiogenic microvascula-
ture, porous media phantoms

I. INTRODUCTION

Prostate cancer is the most frequently diagnosed cancer in
men in western countries [1]. In clinical routine, the golden
standard for prostate cancer diagnosis is the 12-core transrectal
ultrasound-guided systematic biopsies, uniformly sampled on
the prostate. However, biopsies suffer from the overdiagnosis
of insignificant prostate cancer and underdiagnosis of signif-
icant cancer [2, 3]. Moreover, biopsies are invasive, painful
and carry a high risk of infection.

As a noninvasive diagnostic tool, transrectal dynamic
contrast-enhanced ultrasound (DCE-US) allows real-time anal-
ysis of vasculature of the prostate by imaging the blood flow
with the help of intravenously injected ultrasound contrast
agents (UCAs). Thanks to the UCA’s size of 1-10 µm, which
is similar to the size of red blood cells, UCAs can flow through
the entire microvasculature network.

Of particular interest is neo-angiogenesis associated with
tumor growth. Tumor-driven angiogenesis is a recognized hall-
mark of cancer. Angiogenic microvasculature is characterized
by increased microvascular density (MVD), smaller vessel di-
ameter and high tortuosity. This irregular and chaotic network
results in complex blood-flow patterns [4, 5]. Analysis of time-
intensity curves (TICs) obtained from DCE-US loops enables
assessment of blood flow. TICs are measured by collecting
pixel intensity changes over time at a specific pixel point
in the DCE-US loops, representing the UCA concentration
temporal evolution. By performing semi-quantitative analysis
of TICs, perfusion-related parameters such as peak intensity,
wash-in time and mean transit time could be extracted. The
differences of these parameters between benign and tumor
tissue have been exploited by several researchers to assess
tumor perfusion [6, 7, 8]. However, tissue perfusion quan-
tification is strongly affected by ultrasound scanner settings
and the complex physiological conditions in organs, leading
to unreliable tumor detection [9, 10].

Alternatively, tumor detection by analysis of the UCA
dispersion kinetics in microvasculature has shown promise for
prostate cancer diagnostics [11, 12, 13, 14]. Considering the
UCA concentration evolution over time as the result of a con-
vective dispersion process, the mono-dimensional convective-
dispersion equation is employed to model this process. The
modified local density random walk model has been proposed
as a solution of this equation in the time domain, providing
assessment of the microvascular architecture by estimation
of a local dispersion parameter, κ, given by the ratio of
squared velocity over dispersion coefficient. In prostate cancer,
higher values of κ, which means relatively low dispersion with
respect to convection, have been shown to correlate with the
presence of malignant tissue [11]. More recently, considering
the microvasculature as a dynamic system, van Sloun et al.
proposed a method to locally identify the impulse response
of the system by input-output analysis of TICs, enabling
separate estimation of velocity and dispersion coefficient. In
line with previous studies in the prostate, increased velocity
and decreased dispersion were observed in tumor tissue [12].
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Fig. 1. Schematic overview of the in-vitro set-up.

Despite this, a clear link between the estimated parameters
and the underlying microvascular structure is still lacking.

In response, in this work, we developed an in-vitro experi-
mental set-up including dedicated tissue-mimicking phantoms
to investigate this relationship. By taking a macroscopic view
of the prostate microvascular network, UCA flow through the
multi-path trajectories could be simulated as the flow through
porous media [15]. Phantoms mimicking porous media with
tunable pore size were thus designed to simulate different
MVD and vessel diameter. DCE-US was performed to record
the UCA flow through the proposed phantoms, and the velocity
and dispersion coefficient were estimated by a model-based
deconvolution method. The estimated parameters in different
phantoms were then compared to analyze the relationship
between microvascular structure and UCA dynamics.

II. METHODS

A. Experimental set-up and data acquisition

An in-vitro experimental set-up consists of a perfusion
pump, UCA injector, porous media phantom and the ultra-
sound acquisition system, which is schematically shown in
Fig. 1. In this set-up, the self-designed perfusion pump pro-
vided a constant water flow at a rate of 0.22 mL/s. A long tube
connected between the pump and the phantom was employed
to keep a steady flow. The UCA injector was also connected
to the tube by a three-way tap. The porous media phantoms
were built by packing alginate beads in a polyurethane tube,
whose shape was fixed by two circular nets at two sides of
the phantoms. The phantoms were gently squeezed and shaken
after packing to provide a more homogeneous structure. The
length of the phantoms was comparable to the length of
the ultrasound transducer. Variable MVD and vessel diameter
were realized by packing beads with diameters of 3.1, 2.5
and 1.6 mm, respectively. In our experiment, the phantoms
were submerged in water for ultrasound imaging, avoiding
air interference. A 1-mL SonoVue® bolus (Bracco, Milan,
Italy) at dilution of 1:100 was injected into the flow. DCE-US
imaging was performed after the injection using a Verasonics

Fig. 2. Model-based input-output analysis.

ultrasound system (Vantange 128, Verasonics Inc.) equipped
with a L11-4v probe in contrast mode at a frame rate of 25 Hz
for two minutes.

B. Model-based deconvolution

Considering the microvasculature network as a dynamic
system, the impulse response of the system could be identified
by input-output analysis of TICs. In this experiment, the fluid
containing UCA was forced to flow through the porous media
phantoms; the UCA transport in the media can thus be de-
scribed by a convective dispersion process [16]. Accordingly,
the differential model that we adopt to describe the kinetics of
UCA is the one-dimensional convective-dispersion equation:

∂tC(z, t) = D∂2zC(z, t)− v∂zC(z, t), (1)

where C(z, t) is the concentration of UCA at position z and
time t, D is the apparent dispersion coefficient and v is the
convective velocity. Moreover, the Green’s function of the
convective-dispersion equation could be derived as [12, 17],

G(z, t | v,D) =
H(t)√
4πDt

exp(− (z − vt)2

4Dt
), (2)

where H(t) is the Heaviside function.
As shown in Fig. 2, the UCA bolus flows through the

phantom from its left side to its right side, representing the
input and output region of interests (ROIs). TICs extracted
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Fig. 3. The maximum intensity persistence images of three porous media phantoms and their corresponding TICs from input and output ROIs: (a) bead size
of 3.1 mm, (b) bead size of 2.5 mm, (c) bead size of 1.6 mm.

from input and output ROIs were firstly linearized by taking
the square of the intensities. Theoretically, the linearized
output matches the convolution of the linearized input with
the impulse function of the system in between. By minimizing
the mean squared error between the linearized output and the
convolution of the linearized input with the Green’s function
model, we were able to estimate the convective velocity, v,
and dispersion coefficient, D. To reduce the influence of ROI
placement, the estimation was repeated 400 times for each
phantom by translating the input-output ROIs axially and
laterally, and changing the distance between them.

III. RESULTS

Figure 3 shows maximum intensity persistence (MIP) im-
ages of three porous media phantoms obtained from their
DCE-US acquisitions. With decreasing bead size, the MVD
increases and the vessel diameter decreases. Input and output
TICs corresponding to three cases are shown in Fig. 3 as well.
Qualitatively, with the MVD increasing and vessel diameter
decreasing, the TICs become less skewed. Quantitatively, the
estimated velocity and dispersion coefficient are shown in
Table I.

TABLE I
ESTIMATED VELOCITY AND DISPERSION COEFFICIENT

Bead size 3.1 mm 2.5 mm 1.6 mm

v [mm/s] 3.02±0.19 4.3±0.27 8.3±1.9

D [mm2/s] 0.02±0.003 0.01±0.0025 0.005±0.0027

IV. CONCLUSION AND DISCUSSION

In this work, an in-vitro experimental set-up is proposed
for mimicking microvasculature networks with variable MVD
and vessel diameter, and quantitative analysis of the UCA
flow through these tissue-mimicking phantoms is presented.

In general, we can conclude that with higher MVD and
smaller vessel diameter, obtained by decreasing the bead size,
the velocity (v) increases and the dispersion coefficient (D)
decreases. These results are in line with our previous in-
vivo findings in prostate cancer patients, showing that UCA
flow in tumor vasculature is characterized by higher velocity
and lower dispersion compared to benign tissue [11, 12].
This investigation evidences a first step in understanding
the relationship between microvascular structure and UCA
dynamics.

In this experiment, we developed three porous media phan-
toms with bead size varying from 3.1 mm to 1.6 mm. Looking
at the relationship between the estimated parameters and the
bead size, a quadratic increasing trend can be identified for
the velocity, while a quadratic decreasing trend is observed
for the dispersion coefficient. This may reflect the three-
dimensional nature of dispersion and the spatial distribution of
the beads. Further research is required to confirm and clarify
these aspects.

In this work, porous phantoms were obtained by pack-
ing beads of the same size. Considering the scenario of
tumor-driven angiogenesis, which induces the formation of
a microvascular network with vessels of different diameters,
phantom constructed by using multiple bead size might be
more realistic. This will be pursued in the future to provide
a better understanding on how the underlying microvascular
structure influences UCA dynamics.

There are several limitations in this work. The UCA flow
through phantoms is intrinsically a three-dimensional process,
but the DCE-US imaging and subsequent quantitative analysis
were performed in 2D. As such, the observed UCA dynamics
represent the projection of 3D dynamics onto the imaging
plane. Out-of-plane dynamics are therefore lost. Moreover, in
this set-up, constant flow was provided by a perfusion pump
to mimic the flow in the microvascular network. Although the
flow speed is in the order of that expected in the microcircu-
lation (about 2 - 3 mm/s) [18], the resistance of the phantom
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may cause UCA bubble disruption when a constant flow is
provided, especially in the phantom with small beads. This
may influence the result of input-output TICs analysis.

In addition, in a real microvascular network, blood flow
moves only within the vessel lumen. However, in the proposed
phantoms, flow moves not only in each porous channel but also
in the gap between the packed beads and the inner surface
of the polyurethane tube. The flow moving in the gap is
called superficial flow, which might have different dynamic
features compared to flow through porous channels. Moreover,
although the developed phantoms represent a useful proof-
of-concept for quantitative analysis of UCA dynamics, they
cannot fully represent the complex fluid dynamics of UCA in
angiogenic vasculature.

To conclude, in this work, we developed dedicated mi-
crovascular phantoms and investigated the relationship be-
tween UCA dynamics and the underlying microvascular struc-
ture. The obtained results are in line with previous in-vivo
finding [11, 12], confirming the promise of contrast-ultrasound
dispersion imaging for quantification of cancer angiogenesis.
In the future, further validation will be performed both in-
silico, by dedicated simulations of bubble flow through porous
media, and in-vitro, by developing more complex phantoms
using beads of polydispersed size.
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