Multi-covariate Imaging of Sub-resolution Targets: Clinical Feasibility Study

Matthew Morgan¹, Katelyn Flint¹, Will Long¹, Nick Bottenus¹, Patricia McNally², Sarah Ellestad³, Gregg Trahey^{1,4}, William Walker^{1,5}

¹Department of Biomedical Engineering, Duke University, Durham, NC, USA

²Department of Women's and Children's Services, Duke University Medical Center, Durham, NC, USA

³Division of Maternal-Fetal Medicine, Duke University Medical Center, Durham, NC, USA

⁴Department of Radiology, Duke University Medical Center, Durham, NC, USA

⁵Department of Electrical Engineering, Duke University, Durham, NC, USA

Background, Motivation and Objective

The use of spatial coherence in ultrasound beamforming has garnered much attention in the imaging literature. Many methods have been proposed, but generally employ *ad hoc* processing techniques only loosely based on the statistics of backscattered echoes. The van Cittert-Zernike (VCZ) theorem describes the spatial covariance of backscatter from diffuse targets. We have recently applied the VCZ theorem to a piecewise-stationary model of diffuse targets, and demonstrated the spatial covariance of the received echo data is the superposition of covariances from distinct spatial regions. Multi-covariate Imaging of Sub-resolution Targets (MIST) is an image formation method which estimates the contribution of each covariance component to the echo data covariance. Preliminary results have demonstrated MIST improves contrast-to-noise ratio (CNR) and speckle signal-to-noise ratio (SNR) while preserving resolution and native contrast in simulation and phantom acquisitions. While MIST has demonstrated promising initial results *in vivo*, it has not yet been evaluated over a large number of clinical datasets. The work presents a preliminary clinical evaluation of MIST in fetal imaging environments.

Statement of Contribution/Methods

Channel echo data of fetal targets were collected from 15 patient volunteers at the Duke University Fetal Diagnostic Center under an IRB-approved protocol. Data were collected using a Verasonics Vantage scanner and a C5-2V curvilinear array, as fundamental (2.4 MHz Tx/Rx) and pulse inversion harmonic (2.4 MHz Tx/4.8 MHz Rx) imaging modes. Conventional B-Mode and MIST images were formed and evaluated using contrast, CNR and speckle SNR. Regions of interest were chosen as regions of amniotic fluid and speckle-generating tissues around the transmit focal depth in the B-Mode images. Cine loops were acquired to evaluate the temporal stability of MIST.

Results/Discussion

MIST demonstrated improvements in all metrics relative to B-Mode across patients and acquisitions. Fundamental images (N=67) showed mean improvements of contrast by 43%, CNR by 50%, and speckle SNR by 36%. Harmonic images (N=152) showed mean improvements of contrast by 28%, CNR by 49%, and speckle SNR by 42%. Cine loops showed MIST to be temporally stable. These results demonstrate MIST is a clinically-viable imaging method capable of improving image quality across patients.

