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Abstract—Image post-processing is used in clinical-grade ul-
trasound scanners to improve image quality (e.g., reduce speckle
noise and enhance contrast). These post-processing techniques
vary across manufacturers and are generally kept proprietary,
which presents a challenge for researchers looking to match
current clinical-grade workflows. We introduce a deep learning
framework, MimickNet, that transforms conventional delay-and-
summed (DAS) beamformed images into the approximate post-
processed images found on clinical-grade scanners. Training
MimickNet only requires post-processed image samples from
a scanner of interest without the need for explicit pairing
to DAS data. Unpaired image flexibility allows MimckNet to
hypothetically approximate any manufacturer’s post-processing
without hacking into commercial machines for pre-processed
data. MimickNet generates images with an average similarity
index measurement (SSIM) of 0.930±0.0892 on a 300 cineloop
test set, and it generalizes to cardiac cineloops achieving an SSIM
of 0.967±0.002 despite using no cardiac data in the training
process. To our knowledge, this is the first work to approximate
current clinical-grade ultrasound post-processing under realistic
black-box constraints where before and after post-processing
data is unavailable. MimickNet can be used out of the box
or retrained to serve as a clinical post-processing baseline to
compare against for future works in ultrasound image formation.
To this end, we have made the MimickNet software open source
at https://github.com/ouwen/mimicknet.

Index Terms—MimickNet, Clinical Image Enhancement

I. INTRODUCTION AND BACKGROUND

In the typical clinical B-mode ultrasound imaging paradigm,
a transducer probe will transmit acoustic energy into tissue,
and the back-scatter energy is reconstructed via beamforming
techniques into a human eye-friendly image. This image
attempts to faithfully map tissue’s acoustic impedance, which
is a property of its bulk modulus and density. Unfortunately,
there are many sources of image degradation such as electronic
noise, speckle from sub-resolution scatterers, reverberation,
and de-focusing caused by heterogeneity in tissue sound speed
[1]. In the literature, these sources of image degradation can
be suppressed through better focusing [2], [3], spatial com-
pounding [4], harmonic imaging [5], and coherence imaging
techniques [6], [7].

In addition to beamforming, image post-processing is a
significant contributor to image quality improvement. Reader
studies have shown that medical providers largely prefer
post-processed images over DAS beamformed imagery [8],
[6]. Unfortunately, commercial post-processing algorithms are
proprietary, and implementation details are typically kept as
a black-box to the end-user. Thus, researchers that develop
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Fig. 1. Fetal image comparing clinical-grade post-processed images (ground
truth) and MimickNet post-processing. In the last row, the difference between
clinical-grade and MimickNet post-processing is scaled to maximize dynamic
range. The SSIM of the MimickNet image to clinical grade image is 0.972

image improvement techniques on highly configurable re-
search systems, such as Verasonics and Cephasonics scanners,
face challenges in presenting their images alongside current
clinical system scanner baselines. The current status quo for
researchers working on novel image forming techniques is to
compare against DAS beamformed data which is not typi-
cally viewed by medical providers. The optimal comparison
would be pixel-wise to current clinical-grade standards, but
researchers would either need access to proprietary post-
processing code or access to unprocessed DAS data from
difficult-to-configure commercial scanners. We aim to remove
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these barriers by leveraging recent generative adversarial net-
work (GAN) methods developed in the deep learning field [9].

GANs use an adversarial objective function which are a
unique class of distance functions that have shown success in
the related field of image generation [10]. The adversarial ob-
jective optimizes two networks simultaneously. Given training
batch sizes of m with individual examples i, G is a network
that generates images from noise z(i), and another network,
D, discriminates between real images x(i) and fake generated
images G(z(i)). D and G play a min-max game since they
have competing objective functions shown in Eq. 1 and Eq.
2 where θg are parameters of G and θd are parameters of
D. If this min-max game converges, G ultimately learns to
generate realistic fake images that are indistinguishable from
the perspective of D.

argmin
θg

1

m

m∑
i=1

log(1−Dθd(Gθg (z
(i)))), (1)

argmax
θd

1

m

m∑
i=1

logDθd(x
(i)) + log(1−Dθd(Gθg (z

(i)))).

(2)

Conditional GANs (cGANs) have seen success in image
restoration as well as style transfer. With cGANs, a structured
input, such as an image segmentation or corrupted image, is
given instead of random noise [11].

In the field of ultrasound, deep learning techniques using
cGANs and Unet convolutional neural networks (CNNs) [12]
have recently been applied to B-mode imaging. Using CNNs
it is possible to take a sequence of low resolution ultrasound
images to construct a high resolution image [13]. CNNs and
GANs have both been used to improve quality of plane wave
reconstructions [14], [15]. GANs have been used to create a
fast approximation of the known speckle reduction algorithm
non-local low-rank (NLLR) [16]. Finally, GANs have been
shown to have the ability to directly beam-form images [17],
[18]. These and future novel image formation algorithms
would benefit from comparing to a pixel-wise clinical-grade
baseline. Unfortunately, this is a luxury not often available in
most research environments.

We are interested in using an extension of GANs known
as cycle-consistent GANs (CycleGAN) [19] to approximate
clinical-grade post-processing which does not require training
data to be registered together. This unique approach would
allow us to approximate current day commercial algorithms
with data simply acquired through a scanner’s intended use.

CycleGANs consist of two key components: forward-
reverse domain generators, Ga and Gb, and forward-reverse
domain discriminators, Da and Db. The generators translate
images from one domain to another, and the discriminators
distinguish between real and fake generated images in each
domain. We show the objective functions for one direction of
the cycle in Eq. 3 and Eq. 4 where a(i) is an image from
domain A, and b(i) is an image from domain B. In Eq. 3 and
Eq. 4, the variables θga and θdb are the parameters for the
domain A forward generator and domain B discriminator. In

Eq. 3, f can represent any distance metric to compare two
images.

argmin
θga

f(Ga(Gb(a
(i))), a(i)), (3)

argmax
θdb

1

m

m∑
i=1

logDb(b
(i)) + log(1−Db(Gb(a

(i)))). (4)

In this work, we investigate if it is possible to approximate
post-processing algorithms found on clinical-grade scanners
given DAS beamformed data as input to CNN generators. We
first show what is theoretically feasible when before and after
image pairs are provided and refer to this as a gray-box con-
straint. We view this as the classic image restoration problem
where clinical-grade post-processed images are ground truth,
and DAS data are “corrupted”. Later, we constrain ourselves
to the more realistic black-box setting where no before and
after image pairs are available. We view this problem from
the style transfer lens and train a CycleGAN from scratch to
mimic clinical-grade post-processing. We refer to this trained
model configuration as MimickNet. Our results suggest that
any manufacturers’ post-processing can be well approximated
using this framework with just data acquired through a clinical
scanner’s intended use.

II. METHODOLOGY

TABLE I
DATASET OVERVIEW

Scanner Type Targets Frames Train Frames Test Frames
S2000 873 3085 2543 542
SC2000 158 12806 9754 3052
Verasonics 469 23309 18394 4915
Total 1500 39200 30691 8509

We start with 1500 unique ultrasound image cineloops
from fetal, phantom, and liver targets across Siemens S2000,
SC2000, or Verasonics Vantage scanners using various scan
parameters from [20], [21], [6], [22]. This study was approved
by the IRB at the Duke University, and each study subject
provided written informed consent prior to enrollment in the
study. We split whole cineloops into respective training and
testing sets. Each cineloop has multiple image frames of
conventional delay and summed (DAS) beamformed data. The
datasets combined consist of 39200 frames with a 30691/8509
image frame train-test split. Each image frame runs through
a Siemens proprietary compiled post-processing software pro-
ducing before and after pairs. These pairs are shuffled and
randomly cropped to 512x512 images with padded reflection
if the dimensions are too small. Constraining the image dimen-
sions enables batch training, which leads to faster and more
stable training convergence. During inference time, images can
be any size as long as they are divisible by 16 due to required
padding in our CNN architecture. Table I contains details about
our training data.
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A. Gray-box Performance with Paired Images

In the gray-box case where before and after paired images
are available, our problem can be seen as a classic image
restoration problem where our input DAS beamformed data
is “corrupted”, and our clinical-grade post-processed image is
the “uncorrupted ground truth”. We optimize for the different
distance metrics MSE, MAE, and SSIM. As defined in Eq.
5, MSE is the summed pixel-wise squared difference between
a ground truth pixel y(i) in image y and estimated pixel x(i)

in image x. These residuals are averaged by all pixels m in
the image. MAE is defined in Eq. 6 as the summed pixel-
wise absolute difference. SSIM is defined in Eq. 7 and is
the multiplicative similarity between two images’ luminance l,
contrast c, and structure s (Eq. 8-10). X and Y define 11×11
kernels on two images. These kernels slide across the two
images, and the output values are averaged to get the SSIM
between two images. Variables µX , σ2

X and µY , σ2
Y are the

mean and variance of each kernel patch, respectively. Variables
c1, c2, and c3 are the constants (k1L)

2, (k2L)
2, and c2/2

respectively. L is the dynamic range of the two images, k1
is 0.01, and k2 is 0.03. SSIM constants we use are based on
[23].

MSE(x, y) =
1

m

m∑
i=1

(x(i) − y(i))2, (5)

MAE(x, y) =
1

m

m∑
i=1

|x(i) − y(i)|, (6)

SSIM(X,Y ) = l(X,Y ) ∗ c(X,Y ) ∗ s(X,Y ), (7)

l(X,Y ) =
2µXµY + c1
µ2
X + µ2

Y + c1
, (8)

c(X,Y ) =
2σXσY + c2
σ2
X + σ2

Y + c2
, (9)

s(X,Y ) =
σXY + c3
σXσY + c3

. (10)

B. Black-box Performance with Unpaired Images

To simulate the more realistic black-box case where paired
before and after images are unavailable, we take whole
cineloops from the training set used in the gray-box case
and split them into two groups. For the first group, we only
use the DAS beamformed data, and for the second group,
we only use the clinical-grade post-processed data. We then
train a CycleGAN using different distance metrics MSE, MAE,
and SSIM for our generators’ cycle-consistency loss (Eq. 3).
Like in the gray-box case, MSE, MAE, and SSIM metrics
were calculated by running our trained model on the full
test set to their original non-padded size. Since we have
access to the underlying proprietary clinical post-processing,
we can compare against objective ground truths solely for final
evaluation.

C. Generator and Discriminator Structure

The same overall generator network structure is used in both
the gray-box and black-box cases. We use a simple encoder-
decoder with skip connections as seen on the left side of Fig.

Fig. 2. Above is a diagram of the generator and discriminator structure for
MimickNet in one translation direction. Note: the reverse translation direction
uses an identical mirrored structure. Under gray-box training constraints, only
the generator is used.

2. We vary filter sizes and the number of filters per layer
as hyperparameters to the generator, and we report the total
number of weight parameters in each model variation.

The discriminator structure on the right side of Fig. 2 fol-
lows the PatchGAN and LSGAN approach used in [11], [24] to
optimize for least-squares on patches of linearly activated final
outputs. The discriminator is only used to facilitate training in
the black-box case where no paired images are available, and
it is not used in the gray-box case since ground truths are
available.

D. Worst Case Performance

cs(X,Y ) =
2σXY + c2

σ2
X + σ2

Y + c2
. (11)

We investigate outlier images that perform worst on the SSIM
metric by breaking SSIM into its three components: luminance
l, contrast c, and structure s. The equations for contrast c and
structure s are highly related in examining variance between
and within patches. Thus, c (Eq. 9) and s (Eq. 10) are
multiplied together into a single contrast-structure cs equation
(Eq. 11).

III. RESULTS

A. Gray-Box Performance with Paired Images

In the theoretical gray-box case where before and after
paired images are available, we explore different possible Unet
encoder-decoder hyperparameters. For each hyperparameter
variation, we trained a triplet of models that optimize for
SSIM, MSE, and MAE. We note that within each triplet,
models using the SSIM minimization objective have the best
SSIM. We are primarily interested in the best SSIM metric
since it was originally formulated to model the human visual
system [23] and provides the best dynamic range for quality
on our dataset. In Table II, many of the metrics across model
variations are not significantly different, but regardless achieve
a high SSIM.
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TABLE II
GRAY-BOX PERFORMANCE WITH PAIRED IMAGES

Loss Params MSE 10−3 MAE 10−2 SSIM
ssim 34849 2.49±2.88 3.78±2.28 0.975±0.013
mse 34849 2.27±2.41 3.67±1.92 0.950±0.019
mae 34849 2.31±2.54 3.68±1.96 0.951±0.016
ssim 52993 2.28±2.77 3.65±2.24 0.979±0.013
mse 52993 2.19±2.40 3.60±1.92 0.956±0.017
mae 52993 2.11±2.35 3.52±1.89 0.959±0.015
ssim 77185 2.38±2.91 3.70±2.28 0.976±0.015
mse 77185 2.02±2.09 3.46±1.70 0.946±0.022
mae 77185 2.14±2.23 3.55±1.80 0.947±0.020
ssim 117697 2.22±2.65 3.59±2.11 0.977±0.014
mse 117697 2.72±2.51 4.07±1.95 0.931±0.023
mae 117697 2.93±2.93 4.18±2.11 0.927±0.022

B. Black-box Performance with Unpaired Images

In the more realistic black-box case where before and after
images are not available, we also explore different Unet archi-
tecture hyperparameters. We attempted to train from scratch
the same 52993 parameter generator network architecture
selected from Table II, but we were unsuccessful in guid-
ing convergence without increasing the number of generator
parameters to 117697. This increase was accomplished by
changing every filter size from 3×3 to 7×3, and metrics
can be seen in Table III. For the large 7.76M parameter
generator network, performance differences between triplets
of the objective functions are not significant.

We select the 117697 parameter network optimizing MSE
for subsequent analysis since it achieves the highest SSIM
with fewest parameters. We refer to this configuration, shown
in Fig. 2, as MimickNet. In Fig. 1 and Fig. 3, fetal, liver,
and phantom images are shown. Without the scaled absolute
differences in the last rows, it is much more difficult to discern
localized differences between MimickNet images and clinical-
grade post-processed images.

TABLE III
BLACK-BOX PERFORMANCE WITH UNPAIRED IMAGES

Loss Params MSE 10−3 MAE 10−2 SSIM
ssim 117697 7.26±10.5 6.54±4.38 0.883±0.091
mse 117697 6.83±11.1 6.31±4.39 0.930±0.089
mae 117697 6.79±9.89 6.30±4.27 0.900±0.085
ssim 7.76M 4.45±5.71 5.14±3.12 0.918±0.078
mse 7.76M 6.23±6.30 6.14±3.24 0.897±0.052
mae 7.76M 6.20±9.10 6.02±4.21 0.918±0.084

C. Runtime Performance

In Table IV, the runtime was examined for the best SSIM
performing model in the gray-box paired image and black-
box unpaired image training cases. Frames per second (FPS)
measurements were calculated for an NVIDIA P100. Floating-
point operations per second (FLOPS) are provided as a
hardware independent measurement since runtime generally
scales linearly with the number of FLOPS used by the model.
As a reference point, we include metrics from MobileNetV2
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Fig. 3. Liver (left) and phantom (right) images. The difference between
clinical-grade and MimickNet outputs are scaled to maximize dynamic range.
The SSIM between MimickNet and clinical-grade images for the liver target
is 0.9472. The SSIM between MimickNet and clinical-grade images for the
phantom target is 0.9802

[25], a lightweight image classifier designed explicitly for
use on mobile phones. MimickNet uses 2000x fewer FLOPS
compared to MobileNetV2. Note that FPS measurements for
MobileNetV2 were performed on a Google Pixel 1 phone from
[25] and not an NVIDIA P100.

TABLE IV
RUNTIME PERFORMANCE ON NVIDIA P100 AND *PIXEL 1 PHONE UNDER

GRAY-BOX AND BLACK-BOX TRAINING CONSTRAINTS

Model Input Size Params MFLOPS FPS (Hz)
Gray-box 512x512 52993 0.105 142
Black-box (MimickNet) 512x512 117697 0.235 92
MobileNetV2 224x224 4.3M 569 5*

D. Worst Case Performance

We investigate the distribution of SSIM across our entire
test dataset. We break the the SSIM into its luminance l and
contrast-structure cs components following Eq. 8 and Eq. 11.
In Fig. 4, these components’ histogram and kernel density
estimate are plotted for the gray-box paired image and the
black-box unpaired image training cases. The min-max cs
range for the gray-box case is tightly between 0.950 and 0.998,
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Fig. 4. The distribution of contrast-structure (top) and luminance (bottom) of
all image frames in our test dataset produced under gray-box and black-box
constraints. The cs is 0.987±0.005 and l is 0.993±0.0103 under gray-box
constraints. The cs is 0.978±0.008 and l is 0.967±0.073 under black-box
constraints.

and the black-box case overlaps this region with a min-max cs
range between 0.922 and 0.990. The min-max l range of the
gray-box case falls between 0.842 and 1.000, but the black-
box case has a large min-max range of 0.318 and 1.000.

We also closely investigated outlier images that perform
poorly on the SSIM metric by looking at the worst images. Fig.
6 contains three representative images. We included gray-box
image results to showcase better the performance gap between
what is possible when paired images are available versus
when they are not. All three images produced with black-
box constraints have high contrast-structure cs, but variable
luminance l.

E. Out of Dataset Distribution Performance

To assess the generalizability of MimickNet post-
processing, we applied it to cardiac cineloop data. These
data are outside of our train-test dataset distribution which
only included phantom, fetal, and liver imaging targets. We
also applied MimickNet post-processing to a recent novel
beamforming method known as REFocUS [3] instead of

Conventional
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Fig. 5. MimickNet applied to out of distribution cardiac data on con-
ventional dynamic receive images and REFocUS ultrasound beamformed
images. MimickNet is only trained on fetal, liver, and phantom data. SSIM
between clinical-grade post-processing and MimickNet for conventional DAS
beamformed images and REFocUS beamformed images was 0.967±0.002 and
0.950±0.0157, respectively. The last row is at the same scale as the cardiac
images above.

DAS images. REFocUS allows for transmit-receive focusing
everywhere under linear system assumptions resulting in better
image resolution and contrast-to-noise ratio. In Fig. 5, we see
that MimickNet post-processed images closely match clinical-
grade post-processing for conventional dynamic receive beam-
forming with an SSIM of 0.967±0.002. Similar to clinical-
grade post-processing, we see that contrast improvements in
the heart chamber and resolution improvements along the heart
septum due to REFocUS are preserved after MimickNet post-
processing, achieving an SSIM of 0.950±0.0157.
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Fig. 6. The worst case scenario images for two fetal brain images (top, bottom), and a phantom (middle). The SSIM of the black-box case (MimickNet) to
the ground truth images from top to bottom is 0.665 (cs = 0.962, l=0.681), 0.414 (cs = 0.947, l = 0.419), and 0.603 (cs = 0.964, l = 0.612). The SSIM of
the gray-box case to the ground truth images from top to bottom is 0.873 (cs=0.984, l=0.883), 0.967 (cs=0.996, l=0.971), and 0.901 (cs=0.988, l=0.911).
Here l is the luminance and cs is the contrast-structure components of SSIM.

IV. DISCUSSION

MimickNet can closely approximate clinical-grade post-
processing with an SSIM of 0.930±0.089 such that even
upon close inspection, few differences are observed. This
performance was achieved without knowledge of the pre-
processed pair. We do observe a performance gap compared to
the gray-box setting, which achieves an SSIM of 0.979±0.013.
However, emulating the gray-box setting would require re-
searchers to tamper with scanner systems to siphon off pre-
processed data, so we explore ways to eliminate this gap.

The performance gap is primarily attributed to differences in
image luminance from outlier frames seen in Fig. 4. Although
images generated under black-box constraints present a large
min-max l range of 0.318 to 1.000, we note that the mean and
standard deviation is 0.967 ± 0.073. Therefore, the majority
of images do have well-approximated luminance, despite the
sizeable min-max range. For the two fetal brain images in
Fig. 6, we qualitatively see that much of the contrast and
structure are preserved while luminance is not. This matches
the measured quantitative cs and l SSIM components.

We found it interesting that clinical-grade post-processing
would remove such bright reflectors seen in the DAS beam-
formed phantom image (Fig. 6, 2nd row). This level of
artifact removal likely requires window clipping. When we

clip the lower dynamic range of DAS beamformed data
from -120dB to -80dB, we see the bright scatterers in DAS
beamformed images dim and practically match clinical-grade
post-processing without any additional changes. Conceptually,
clipping values to -80dB is a reasonable choice since it is
close to the noise floor of most ultrasound transducers. In
the CycleGAN training paradigm, it can be challenging to
learn these clipping cutoffs due to the cycle-consistency loss
(defined in Eq. 3). The backward generator would be penalized
by any information destroyed through clipping learned in the
forward generator. Since the cycle-consistency loss does not
exist in optimization under the gray-box setting, the model
under gray-box settings can learn the clipping better than under
black-box settings. Fortunately, luminance can be modified to
a large extent in real-time by changing the imaging window
or gain by ultrasound end-users.

As is, MimickNet shows promise for production use. It
runs in real-time at 92 FPS on an NVIDIA P100 and uses
2000x fewer FLOPS than models such as MobileNetV2, which
was designed for less capable hardware such as mobile phone
CPUs. This runtime is relevant since more ultrasound systems
are being developed for mobile phone viewing [26]. Future
work will assess the performance of MimickNet on mobile
phones and other data or compute constrained settings.
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This work’s main contribution is in decreasing the barrier
of clinical translation for future research. Medical images
previously only understood by research domain experts can be
translated to clinical-grade images widely familiar to medical
providers. Future work will aim to implement a flexible end-to-
end software package to train a mimic provided data from two
arbitrary scanner systems. Future work will also examine how
much data is required to create a high-performance mimic.
Our results with unpaired domain translation suggest a similar
method could be used to approximate medical image post-
processing in other modalities such as CT and MR.

V. CONCLUSION

MimickNet closely approximates current clinical post-
processing in the realistic black-box setting where before and
after post-processing image pairs are unavailable. We present
it as an image matching tool to provide fair comparisons
of novel beamforming and image formation techniques to
a clinical baseline mimic. It runs in real-time, works for
out-of-distribution cardiac data, and thus shows promise for
practical production use. We demonstrated its application in
comparing different beamforming methods with clinical-grade
post-processing and showed that resolution improvements are
carried over into the final post-processed image.
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