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Abstract—A delay-and-sum beamformer for 3D imaging using
row-column arrays and written in CUDA is presented and com-
pared to an existing similar GPU-based beamformer written in
the MATLAB programming language. Data from a 192+192 row-
column array single element emission sequence is simulated and
beamformed. The two beamformers’ performance is evaluated
in two synthetic aperture setups comprised of 1) two orthogonal
planes and 2) a full volume on three different NVIDIA GPUs:
a 1050 Ti, a 1080 Ti, and a TITAN V. The execution time and
the sample throughput (samples beamformed per second) are
reported. The CUDA beamformer performs consistently better
than the MATLAB beamformer with speed-ups ranging from
1.9 to 64.6 times, and the worst-case throughput of the CUDA
beamformer exceeds the best-case of the MATLAB beamformer.
High-resolution images of crossing planes can be beamformed
at up to 13 Hz, while a 50-by-50-by-20 cubic-millimeter high-
resolution volume sampled at one quarter of a millimeter is
beamformed in 3 seconds.

I. INTRODUCTION

3D ultrasound imaging requires a 2D distribution of trans-
ducer elements to steer the beam in both azimuth and eleva-
tion. Fully populated arrays can be full matrices [1] or crossed
electrodes that are also known as row-column (RC) arrays [2].
While the interconnect scales quadratically with the number
of transducer elements for matrix arrays, it scales linearly for
RC arrays. The number of elements translates to resolution,
contrast, and better signal-to-noise ratio and thus penetration,
where a RC array performs better than a matrix array with
the same number of elements [3]. Flat RC arrays are limited
to a forward-facing field-of-view, which can be remedied by
applying a defocusing lens [4], [5]. The imaging performance
of RC arrays has been verified by a number of groups [6]–[9],
and volumetric 3D vector flow imaging has been demonstrated
[10], [11].

Another advantage of RC arrays’ linear scaling is that
volumetric images are made from an equivalent amount of data
to that used for 2D imaging. This greatly alleviates the issue
of the memory wall [12] for 3D ultrasound imaging making
frame rates depend primarily on processing speed instead of
memory bandwidth. Beamforming is inherently parallel since
no computational dependency exists between output samples,
and parallel processors such as GPUs can deliver real-time 2D
imaging [13], [14]. This work investigates and compares the
performance of two RC beamformers on three different GPUs.

Section II presents the two beamformers being investigated,
Section III describes the experiments conducted to evaluate
their performance and the performance metrics used, Sec-
tion IV presents the results, Section V discusses the results,
and Section VI offers conclusions.

II. BEAMFORMERS

Two delay-and-sum (DAS) beamformers are written for
execution on GPUs. Both beamformers take as input the
geometry (transmit focus, receive element coordinates, and
image geometry), apodization parameters, speed of sound,
and sampling frequency of the data. Dynamic apodization is
supported by both beamformers parametrized on the F-number
and window function.

The RC array’s long elements result in cylindrically shaped
waves – rather than the spherical waves from small elements –
which requires a different delay model for DAS beamforming
[15]. A side effect of this is that the delay calculation can be
reduced to a 2D problem through appropriate choice of the
coordinate system [15], [16]. This reduction is used in both
beamformers.

One beamformer is written entirely in the MATLAB pro-
gramming language using the gpuarray type for GPU
processing and has been presented elsewhere [16]. The other
beamformer is written in C++ using NVIDIA’s CUDA ex-
tensions and called from MATLAB using the MEX interface.
These two beamformers perform the same calculations with
some differences in implementation outlined below. They are
referred to as the MATLAB and the CUDA beamformer,
respectively. An overall description is given of the MATLAB
beamformer, while the CUDA beamformer is described in
more detail.

A. MATLAB beamformer

The MATLAB beamformer has been presented and evalu-
ated on a single GPU previously [16] and is briefly summa-
rized here. All intermediate results (transmit, receive, and total
delays and apodization values) are stored in memory on the
GPU for all output samples to minimize recomputations at the
cost of increased memory transfers. This essentially creates
memory and apodization tables that are only recalculated,
if the related input parameters change. Apodization values
are calculated by evaluating the window function with the
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appropriate parameters. Sub-sample precision is attained using
cubic interpolation, and the image geometry is specified as a
list of the output samples’ coordinates.

B. CUDA beamformer

CUDA uses a single instruction, multiple threads (SIMT)
execution model, where all program threads execute the same
set of instructions. For efficient execution, threads should have
equal (or similar) workload and have a minimum of synchro-
nization among other considerations. The general beamform-
ing problem has two immediate approaches for distribution
across threads: 1) for a window of input samples, calculate
the output values these input samples contribute to, and 2) for
a given output sample, load the corresponding input samples
and calculate the output value. The first approach is likely
to result in uneven workloads between threads and requires
synchronization for summing the different contributions to
each output value. The second approach has equal workload
for all threads and requires no synchronization. The CUDA
beamformer therefore calculates one output sample per thread,
i.e., each thread calculates the sum across all receive channels.

The intermediate results (delays and apodization values)
are recalculated every time they are needed. The calculation
is performed based on a minimal set of parameters (tens of
bytes) as opposed to the delay and apodization tables read from
memory by the MATLAB beamformer. The image geometry
is specified as a set of lines with an origin and a step vector,
where all lines must have the same number of samples, and
3rd order Lagrange interpolating polynomials are used for
subsample interpolation.

A cumulative sum of images is maintained in GPU mem-
ory for synthetic aperture (SA) imaging [17], [18] to avoid
transferring each low-resolution image out of the GPU.

III. EXPERIMENTS

The two beamformers are evaluated on three different
NVIDIA GPUs: a GeForce 1050 Ti, a GeForce 1080 Ti, and
a TITAN V. CUDA toolkit version 9.0 and MATLAB R2018a
are used.

A single-element SA imaging sequence with a 192+192
λ/2 RC array is used for two use-cases: 1) beamforming two
orthogonal planes and 2) beamforming a volume. The output
is sampled at λ/2 in all directions. In setup 1, the XZ and YZ
planes contain 192× 76 samples each. In setup 2, the volume
is 192 × 192 × 76 samples (x × y × z). For the MATLAB
beamformer, the volume in setup 2 needs to be split in sub-
volumes due to the memory used for intermediate results. For
the 1050 Ti with 4 GB memory, 21 sub-volumes are needed to
cover the full volume, the 1080 Ti with 11 GB memory needs
8 sub-volumes, and the TITAN V with 12 GB needs 7 sub-
volumes. The inputs to the beamformers are analytic signals
from a Field II simulation [19], [20] represented using double
precision floating point numbers.

For performance measurements, execution times are mea-
sured using the wall-clock time, while the respective systems
are otherwise unused. The same beamforming operations and

TABLE I
EXECUTION TIMES IN SECONDS FOR SETUP 1

GPU MATLAB CUDA Speed up
1050 Ti 6.7 ± 0.046 2.4 ± 0.003 2.8
1080 Ti 7.2 ± 0.012 0.65 ± 0.001 11
TITAN V 4.7 ± 0.007 0.073 ± 0.001 65

TABLE II
EXECUTION TIMES IN SECONDS FOR SETUP 2

GPU MATLAB CUDA Speed up
1050 Ti 411 ± 0.141 216 ± 0.009 1.9
1080 Ti 99.5 ± 0.007 42 ± 0.001 2.4
TITAN V 52.9 ± 0.231 3.1 ± 0.004 17

read-out of the results to main memory were repeated 10 times
in a loop, and each loop iteration was timed. The first three
iterations were discarded to eliminate initialization effects,
while the mean and standard deviation were calculated from
the remaining seven iterations. Reads and writes from and to
disk are not included in the timing, and a routine to flush the
CPU caches was called between each iteration to avoid a false
speed-up from beamforming the same data repeatedly.

The sample throughput, Nsps, (number of samples beam-
formed per second) is calculated as

Nsps =
NlNsNrxNtx

t
, (1)

where Nl is the number of image lines, Ns is the number
of samples per line, Nrx is the number of receive elements,
Ntx is the number of transmit events (the number of low-
resolution images used to make a high-resolution image), and
t is the mean execution time.

Denoting the mean execution time of the MATLAB beam-
former tM and of the CUDA beamformer tC , the speed-up,
s, is calculated as

s =
tM
tC
. (2)

IV. RESULTS

Fig. 1 shows the YZ planes of setup 1 for both beamformers.
The point spread functions (PSFs) have only small deviations
with a mean difference of -79 dB relative to the peak of
the envelopes. The two beamformers have slightly different
implementations of the calculations as described in Section II,
which may be the cause of these deviations. Both PSFs
have the same resolution measured as the full-width at half-
maximum (FWHM) of 2.4λ in the y-direction and 0.66λ in
the z-direction, where λ is the wavelength at the transducer’s
center frequency. The 20 dB cystic resolution [21] is 1.9λ in
the YZ plane for both beamformers.

Fig. 2 shows the performance of the beamformers on both
setups. The vertical axis shows the sample throughput for each
setup and GPU. Tables I and II show the mean and standard
deviation of the execution time for each GPU for setups 1 and
2, respectively.

The standard deviations on the execution times are very low,
showing consistent running times, which is to be expected of
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Fig. 1. PSF from the MATLAB (left) and CUDA (right) beamformers for the YZ plane of setup 1. Contour lines are shown at 6 dB intervals down to -42 dB.

Fig. 2. Performance of the beamformers measured as the number of
beamformed samples per second

a computer executing the same sequence of instructions with
the same input parameters and data. The non-zero standard
deviations are likely the result of using the wall clock time
as well as operating system tasks taking up small amounts of
processor time.

The CUDA beamformer performs consistently better than
the MATLAB beamformer. This is likely due to the MATLAB
beamformer being limited by reading and writing intermediate
results from and to the GPU’s main memory. Each opera-
tion (delay and apodization calculations and their constituent
operations) translates to a call of a GPU function that reads
its operands and writes its result to the GPU’s main mem-
ory. The main limit for the MATLAB beamformer is, thus,
these memory transfers. For the CUDA beamformer, these
intermediate results remain in the GPU’s internal registers.
Another indication of the MATLAB beamformer not being
limited by computations is the lack of scaling for setup 1: the
TITAN V only performs 1.5 times better than the 1050 Ti,
whereas it has 33 and 70 times higher performance for the
CUDA beamformer with setups 1 and 2, respectively.

Setup 2 has consistently higher sample throughput than
setup 1, even though the two setups have the same input data

sets and only differ in the number of output samples. Setup 2
produces around 2.8 million samples, while setup 1 produces
around 30 thousand samples. Since the input data is the same
in both setups, the time for input data transfer is identical, but
many more beamforming operations are performed per data
transfer in setup 2. This shows that the data transfers are a
significant factor in the performance of setup 1.

This difference in throughput is larger for the MATLAB
beamformer than for the CUDA beamformer on all GPUs. This
shows that the MATLAB beamformer is more sensitive to the
number of output samples than the CUDA beamformer. This is
also explained by the relatively lower overhead of performing
more computations for each call.

Finally, it is noticed that the worst-case throughput of the
CUDA beamformer is still higher than the best-case of the
MATLAB beamformer on all GPUs.

V. DISCUSSION

For the simulated RC array, full volumes are imaged using
only 192 channels. This is in stark contrast to the 36, 864
channels required for an equivalent fully populated matrix
array.

Linear and curvilinear arrays in clinical use today typically
use 192 channels. These arrays, however, only image slices
while averaging over the slice thickness that typically varies
from 5λ at the focus of the fixed elevation lens to 15 to
25λ away from the lens depending on the element size and
imaging depth. The RC arrays can be focused electronically
in both planes yielding an order of magnitude improvement in
resolution with the same amount of input data as handled in
clinical systems today. This means that interconnect and data
transfer do not pose a challenge for 3D imaging using RC
arrays. For the examples shown here, each image is comprised
of 192 emissions. For setup 1 with the CUDA beamformer on
the TITAN V, this means that real-time imaging can be made
at a pulse repetition frequency of 2.6 kHz.

However, when using λ/2-pitch arrays, fewer emissions are
needed than for λ-pitch linear and curvilinear arrays in use
today [22], [23]. A study of the number of emissions required
to attain similar image quality with λ and λ/2-pitch probes
yielded a reduction from 61 to 21 emissions for plane wave
imaging [22]. Similarly, a study of the number of emissions
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required in SA imaging with the same λ/2-pitch probe showed
minimal differences between using 256 and 32 emissions [23].
This translates directly to an increase in frame rate by a factor
of 3 to 8. This corresponds to frame rates of 52 Hz to 112 Hz
for setup 1, or 1 to 2.5 full volumes per second for setup
2 with the CUDA beamformer on the TITAN V. This, of
course, assumes the beamformer throughput is independent of
the number of emissions, which is reasonable since the only
added overhead is the read-out of the high-resolution image or
volume. This is 45 MBytes for setup 2 using double precision
complex values. This should be contrasted to the 15.75 GB/s
maximum bandwidth of 16-lane PCI Express 3 interfaces used
by many contemporary GPUs.

Further speed-ups can be attained by using single-precision
floating point numbers or fixed point integer calculations.
Experiments using single-precision floating point numbers
indicate that the frame rate of setup 1 can be improved
from 1.5 Hz to 13 Hz for the 1080 Ti, and from 14 Hz to
20 Hz for the TITAN V. The 1080 Ti has 32 times as high
performance for single precision compared to double precision
operations due to differences in hardware support for the two
[24]. The TITAN V has the same theoretical performance for
both precisions. The frame rate increase for the TITAN V is
likely caused by the halved memory bandwidth needed in the
beamforming process, while the larger improvement for the
1080 Ti is explained by the improved hardware throughput.

VI. CONCLUSION

Two row-column beamformers written in the MATLAB
programming language and CUDA have been compared. The
worst-case performance of the CUDA beamformer exceeds the
best-case of the MATLAB beamformer across all GPUs. 3D
synthetic aperture imaging is attained at 14 Hz for two cross-
planes with a high-end scientific GPU (TITAN V) for a 192
emission sequence with a 192+192 array. This corresponds to
a pulse-repetition frequency of 2.6 kHz rapidly approaching
real-time 3D synthetic aperture imaging. Volumetric synthetic
aperture imaging of a 50 × 50 × 20 mm3 box at one high-
resolution volume every three seconds is attained. This vol-
ume easily covers e.g. the mitral valve that can be imaged
throughout a single heart beat with no need for ECG gating
or similar techniques in less than one minute of processing
time with only 192 channels of data.
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