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Abstract—Plane-wave compounding is to sum up several suc-
cessive plane waves incident at different angles to form an image.
By applying time-reversal of the received signals, transmit focus-
ing can be synthesized. Unfortunately, to improve the temporal
resolution, the number of plane waves should be reduced, which
often degrades the image quality. To address this problem, an
image domain learning method using neural networks has been
proposed, but the network needs to be retrained when the number
of plane waves changes. Herein, we propose, for the first time, a
universal plane-wave compounding scheme using deep learning
to directly process plane waves and RF data acquired at different
view angles and sub-sampling rate to generate high quality US
images.

Index Terms—Ultrafast ultrasound, planewave imaging (PWI),
plane wave compounding, deep learning, beamforming

I. INTRODUCTION

In planewave imaging (PWI) ultrasound, multiple low qual-
ity images are acquired with different incident angles, and
with the help coherent compounding, a single high quality
image is formed from these low quality images. Although
number of planewaves (PWs) required for high quality image
is typically smaller than the number of scanlines in focused
mode scanning, the memory utilization and associated power
consumption is relatively higher than the focused mode imag-
ing [1]. One way of reducing the data is to skip acquisitions
at some angles to improve temporal resolution at the cost
of spatial resolution. Unfortunately, standard compounding
methods produce degraded quality images when the number
of plane wave is not sufficient, which make it unsuitable for
clinical applications.

Although a low cost compressive sensing based method
was proposed in [2], the results were shown on the limited
number of simulation data only, and we found that the al-
gorithm often produces inferior results compared to conven-
tional coherent plane-wave compounding (CPC) method. To
achieve reasonable performance to complexity ratio, a variety
of deep learning methods have been recently proposed that are
specifically trained for particular acquisition scenario [3], [4].
Herein, by properly exploiting the spatio-temporal redundancy
in PW-depth-channels cube, we propose a convolutional neural
network (CNN) based plane wave compounding method called
(DeepPWI) that generates high quality images for various
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imaging configurations. The major contributions of this work
are as follows:

o A single universal model is proposed for variety of sub-
sampling schemes such as uniform PW sub-sampling or
random sub-sampling of RF data.

o The proposed model is evaluated for real measurements
on both phantom and in-vivo scans.

o The performance of proposed method is evaluated on
large number of scans using standard and recently pro-
posed quality measure such as generalized contrast-to-
noise-ration (GCNR) [5].

II. PROPOSED METHOD

To design a deep learning based CPC method, we con-
sider a set of fully-sampled RF measurements defined as
F € R*Y*# where x,y, z represents the number of depth
planes, the length of RF signals, and the number of plane-
waves, respectively. Then, in the conventional CPC methods,
z number of low-resolution beamformed RF images are com-
pounded to produce a high-quality RF image, I € R**Y,
Our objective is to estimate I using RF and plane-wave sub-
sampled measurements S € R**™*" Here, m < y is reduced
length of RF signal and n < z is reduced number of plane-
waves, respectively. Since we are interested in designing a
universal deep model for all sampling patterns, we choose
to use a fixed size input signal T' € R**Y*Z where sub-
sampled measurement data S is padded with zeros to adjust
the size. Identification of optimal compounding function is
possible by identifying the ©-parameterized model Qg such
that I = Qg(T) produces the least empirical loss for the
training data.

We propose to estimate compounding model Qg with
convolutional neural network. Although deep learning models
are typically assumed as black-boxes, this black-box approach
limits their applications for medical applications where dis-
crimination between measurement artifacts and actual abnor-
malities is essential for the diagnosis purposes. In contrast to
these blackbox approaches, in this study we used the design
strategy which is mathematically plausible. In particular, we
used the design approach based on our recent study [6],
where we found that an encoder-decoder CNN with ReLU
non-linearity and skip connections generates large number of
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Fig. 1.

distinct non-overlapping regions where input for each region
shares the common linear representation. This piecewise linear
approximation of the mapping allows the CNN to switch to the
corresponding linear representation instantaneously depending
on the input data, and this property is suitable for adaptive
plane wave compounding scheme by effectively reconstructing
images for variety of sub-sampling schemes. Therefore, our
DeepPWI neural network can be trained to estimate the filters
© by solving the following optimization problem:

N
minz 0@ —
e “
=1

where Q is the composite representation of deconvolution
filters and compounding weights, {(2(?), v*)} N denotes the
training data set composed of RF data and the target data at a
specific depth, which are collected across all depth, subjects
and sub-sampling patterns.

In this study the proposed CNN model consist of 27
layers each comprises of convolution, batch normalization,
ReLU, and skip connections. The detailed block diagram
of proposed method is shown in Fig. 1. The CNN takes 3
adjacent depth planes to generate central depth vector. By
sequentially processing the sub-sampled data-cube a high-
quality image can be generated. The model is implemented
using MatConvNet [7] in the MATLAB 2015b environment.
To optimize the learning parameter, the model is trained using
stochastic gradient descent algorithm by varying the learning
rate from 10-3 to 10-5 in 200 epochs.

For experimental verification, 100 phantom, and 100 in-
vivo samples are acquired from the ATS-539 phantom and
the carotid area of 10 volunteers, using the E-CUBE 12R
US system with L3-12H linear array transducer on 8.48 MHz
center frequency. For training purpose, RF data of only 8 in-
vivo frames (images) were used. Each US image, the raw data
have depth ranges between 25— 60 mm and consist of 31 PWs
and 192-channels. For quantitative evaluation we used two
sampling schemes: (1) uniform sub-sampling of PW images,
to improve temporal resolution, and (2) random sub-sampling
of RF data to reduce power consumption. In particular, for
PW sub-sampling experiment, we generated four input subsets

Qo2 |3 (1)

Schematic diagram of the proposed convolutional neural network (CNN) based planewave reconstruction system

each consist of 31, 11, 7 or 3 PWs. In random sub-sampling
scheme, RF data is randomly sub-sampled and missing data is
replaced by zero padding. In particular we generated four input
subsets each with 1, 2, 4 and 8 times sub-sampled data. For
both sampling schemes, the target label data for training were
obtained using conventional CPC method with fully-sampled
31 PWs.

III. RESULTS AND DISCUSSION

The trained model is evaluated using peak-signal-to-noise
ratio (PSNR) and the recently proposed generalized contrast-
to-noise ratio (GCNR) [5] measure. In particular, the scale of
GCNR with the ranges of [0,1] is very intuitive and easy to
interpret, where 0 represents no contrast and 1 represents the
maximum contrast. Fig. 2 show the quantitative comparison
results in terms of GCNR for in-vivo and phantom examples
on different sub-sampling patterns. We found that the proposed
method effectively improves the contrast of the sub-sampled
data. Interestingly, for in-vivo case, the GCNR results by the
proposed method did not drop even with only 7 PWs or 4x
down-sampling, and the performance drop was small even
for extremely high sub-sampling rates i.e., for 3 PWs and
8x down-sampling. For phantom data case, we also observed
graceful performance degradation and the relative gain in
GCNR was almost same as in in-vivo case. It is notewor-
thy to point-out that a single CNN model is used for the
reconstruction in all sub-sampling scenarios and no additional
training is performed for particular datatype (phantom/in-vivo)
or sampling patterns.

Fig. 3 show example results from in-vivo and phantom
scans. The images are generated using CPC and the proposed
DeepPWI methods using fully sampled and sub-sampled data.
In particular, for sub-sampled case, we compared PW down-
sampling cases with only three PWs and 8 x random RF sub-
sampling results. For the calculation of GCNR two regions are
selected as highlighted with yellow and blue circles in Fig. 3.
The same regions are magnified for better visualization. All
images are shown for 40mm axial depth on the dynamic range
of 60 dB scale.

Fig. 3(a) show reconstruction results on in-vivo data from
carotid region. The proposed method successfully recovers the
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detailed anatomical features in sub-sampled images, where
conventional compounding method generates images with the
washout artifact. This improvement is quantified using PSNR
and GCNR measures. In particular, we achieved 0.56dB and
4.13dB PSNR gain in PW and RF sub-sampling schemes,
respectively. The similar trend is observed in GCNR perfor-
mance, where proposed algorithm show 0.93 and 0.94 units
GCNR which is 3% and 14% higher than the conventional
method. Besides, our universal model also works well with
fully sampled data and produces very high PSNR of 35.81dB.
This similarity is also visible in GCNR results. These obser-
vations in Fig. 3(a) coincides with the quantitative results in
Fig. 2(top).

In Fig. 3(b), the similar performance improvement was
observed by the proposed method for both fully sampled
data, and PW/RF sub-sampled cases. It is worthy to note
that although the model is trained on in-vivo Carotid data it
learns to produce high quality images even for sub-sampled
phantom dataset. For example, in Fig. 3(b), for the case
of PW sub-sampling case, CPC method generates very dark
image, which indicates the loss of dynamic range due to high
sub-sampling rate. However, the proposed DeepPWI method
produces significantly improved quality image with 18.14dB
PSNR and 0.73 units GCNR i.e., 6.73dB, and 1% higher
than the CPC method, respectively. Similarly, for 8 x random
RF sub-sampling case, our reconstruction results coincides
with the quantitative results in Fig. 2(bottom). In particular,
proposed DeepPWI method achieve 23.52dB PSNR and 0.69
units GCNR score, which is 2.19dB and 13% higher than the
conventional CPC method. It shows that the overall perfor-
mance gain achieved using the proposed method is robust
to the sub-sampling patterns; moreover, it is insensitive to
particular datatype.
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Fig. 2. B-Mode images from in-vivo data of carotid region (top), and from
tissue mimicking phantom (bottom)
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IV. CONCLUSION

In this research, we presented a purely data-driven method
for plane wave compounding in ultrasound images. The pro-
posed method exploits the spatio-temporal redundancies in the
raw RF data to generate improved quality B-mode images
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Fig. 3. B-Mode images from in-vivo data of carotid region (top), and from
tissue mimicking phantom (bottom)

using fewer Rx channels or planewave images. Furthermore,
the network was also used for the fully sampled RF data
to significantly improve the image contrast and resolution.
The proposed neural network-based reconstruction approach
is robust and suitable for various sub-sampling patterns. The
proposed model is shown achieve significant improvement
over sub-sampled data for both the phantom and the in-vivo
scans. Therefore, this method can be an important platform
for accelerated planewave US imaging.
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