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Abstract—Resonant ultrasound spectroscopy (RUS) is a well-

established method of identifying the elastic coefficients of solid 

materials. The Rayleigh-Ritz method (RRZ) is usually used to 

calculate the natural frequencies of a specimen, where the 

specimen needs to be processed into a certain regular body. This 

requirement is hard to meet for some materials with size 

limitations or special physical/chemical properties. Our objective 

was to address this limitation with a new approach adapted to 

specimens of arbitrary geometry by combining RUS with micro 

computed tomography (µ-CT) and finite element modeling 

(FEM). And also the accuracy of the proposed approach was 

assessed using titanium irregular specimens. The elastic coefficient 

results showed good agreements (below 2%) with values of a 

rectangular parallelepiped specimen measured by the RRZ-based 

RUS. This study overcomes the limitation of RUS to specimen 

geometry and allows identification of the elastic properties of 

irregular specimens with good accuracy.  

Keywords—resonant ultrasound spectroscopy, finite element 

method, irregularly shaped solid materials, elastic coefficients 

I. INTRODUCTION  

The elasticity measurement of solid materials is of great 
significance in industrial applications, as well as in physics and 
material science. Traditional measurement methods [1] mainly 
include quasi-static mechanical testing methods (macroscopic 
stretching and compression, etc.), sound velocity method and 
resonant ultrasound spectroscopy (RUS). In these methods, 
RUS is considered by physicists to be the most accurate method 
for measuring elastic coefficients of the solid materials with high 
Q (quality factor) values, such as metal and crystalline materials  
[2]. 

RUS method is a combination of the experimental 
measurement and numerical calculation. For a specimen with 
determined material properties (including elastic coefficients, 
symmetry and orientation), geometry and mass density, a 
mathematical model can be established to calculate the 
specimen’s natural frequencies and the corresponding modes. 
Therefore, provided other parameters, the elastic coefficients of 
the specimen material can be inversely obtained from the 
experimental resonant frequencies measured in the ultrasound 
resonance experiments. 

In RUS, the mathematical model for calculating the resonant 
frequencies of the specimen is generally solved by the Rayleigh-
Ritz method (RRZ). This method is based on the integration of 
the specimen volume, which requires the specimen to be certain 
regular geometries with sufficient dimension accuracy, such as 
rectangular, cylinder, etc [2]. This requirement is hard to meet 
for some materials with size limitation or special 
physical/chemical properties [3], [4]. Instead, the finite element 
method (FEM) provides a feasible solution for the theoretical 
resonant frequency calculation of irregular specimens [4]. 

However, due to the fact that the FEM model has large 
degrees of freedom, researchers mentioned that the classic 
Levenberg-Marquart (LM) algorithm [2] is no longer suitable 
for solving the inverse problem when FEM is adopted to 
calculate the theoretical resonant frequencies [5], [6]. To address 
this problem, Plesek and Maletta proposed alternative methods: 
the fixed point iteration method [5] and the genetic algorithm 
[7]. Subsequently, the FEM-based RUS technique are applied to 
estimate the elastic coefficients of arbitrary contoured sheets [8] 
and an imaginary irregular body [6], but the above studies 
remain in the simulation stage. 

To deal with the limitation that the RRZ-based RUS cannot 
be applied to irregular specimens, this paper proposes a new 
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approach combining RUS with micro computed tomography (µ-
CT) and FEM. The feasibility and accuracy of this approach are 
verified by the titanium material. 

II. METHOD 

A. RUS combined with FEM and μ-CT 

The mathematical model for calculating the theoretical 
resonant frequencies of a specimen is usually described using 
the following generalized eigenvalue problem [2]: 

 
2= (2π )Γa Eaf  (1) 

Where f  is the natural resonant frequency, and a  is the 

corresponding resonant mode. Γ  and E  are the specimen’s 

stiffness matrix and mass matrix, respectively. In (1), Γ  is the 
only term containing the elastic coefficients to be tested. 

For specimens with complex geometry, the FEM method is 
adopted to solve the above mathematical model. First, the 
specimen is scanned using a µ-CT (Skyscan 1272, Bruker 
Micro-CT NV, Belgium). The scanned images are imported into 
the Mimics software (Materialise NV, USA) to initially 
reconstruct the specimen’s three-dimensional (3-D) geometry, 
which is then optimized in Geomagic studio (3D Systems 
Corporation, USA). With the specimen’s geometry acquired, the 
natural frequencies of the specimen can be calculated using the 
linear perturbation-frequency module in a commercial finite 
element software: Abaqus (Dassault Systèmes Simulia Corp., 
USA). 

Given initial guesses of the elastic coefficients, the resonant 
frequencies and modes of the specimen can be obtained through 
the FEM model built in Abaqus. Also, a custom-made RUS 
experimental setup is used to measure the resonant spectra of the 
specimen, from which the experimental resonant frequencies are 
extracted [4]. Thereby, an inverse problem can be constructed 
by fitting the theoretical frequencies and the experimental ones 
to optimize the elastic coefficients in the FEM model. The 
method flowchart is shown in Fig. 1. 

B. Inverse problem solving using LM 

The cost function of the inverse problem is as follows: 
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The key step of using the LM algorithm to solve this inverse 
problem is to calculate the derivatives of the resonant 
frequencies to the elastic coefficients [2]: 
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needs to be calculated. Due to the fact that a linear relationship 

exists between the stiffness matrix and the independent elastic 

coefficients [2]: 
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Γ
depends only on the geometry, mass density and 

material symmetry of the specimen. It can be calculated in 

advance without giving the exact value of C , which greatly 

reduces the calculation cost. And
αC





Γ
is the specimen’s 

stiffness matrix when C equals 1 and other elastic coefficients 

equal 0. 

III. METHOD VALIDATION  

The method validation was carried out using the titanium 
material. First, a rectangular parallelepiped specimen was 
prepared, and its elastic coefficients were measured by the RRZ-
based RUS, which served as the reference values. At the same 
time, the elastic coefficients of five irregular titanium specimens 
were measured by the FEM-based RUS and compared with the 
reference values. 

For irregular specimens, the precision of the CT image was 
4 microns for an isotropic voxel. In Abaqus, the specimen is 
discretized into multiple quadratic tetrahedral elements 
(C3D10). The material symmetry of titanium in the LM 
optimization was assumed to be orthotropic and the initial values 
of the elastic coefficients were C11 = C22 = C33 = 162.8 GPa, C44 
= C55 = C66 = 42.9 GPa, C12 = C13 = C23 = 77.0 GPa [9]. 

Fig. 1. The flowchart of RUS combined with FEM and μ-CT. 
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TABLE I.  ELASTIC COEFFICIENTS OF THE TITANIUM SPECIMENS 

Method Specimen 
Elastic coefficient (GPa)  (|Difference|%) 

C11 C22 C33 C44 C55 C66 C12 C13 C23 

RRZ-based RUS 1 162.20 166.95 169.71 47.22 42.49 40.32 83.40 79.58 74.57 

FEM-based RUS 

2 
160.17 166.71 171.29 47.12 42.64 39.79 83.1 79.05 75.9 

-1.25 -0.15 0.93 -0.21 0.35 -1.31 -0.36 -0.66 1.79 

3 
161.14 167.27 170.12 47.49 42.98 39.68 84.02 79.15 75.46 

-0.66 0.19 0.24 0.58 1.15 -1.58 0.74 -0.54 1.20 

4 
161.67 168.21 170.36 47.58 42.78 40.28 84.27 78.61 74.66 

-0.33 0.75 0.38 0.77 0.68 -0.09 1.04 -1.22 0.13 

5 
161.59 164.88 170.83 47.58 42.72 40.07 82.53 79.11 73.3 

-0.38 -1.24 0.66 0.77 0.54 -0.61 -1.05 -0.59 -1.70 

6 
161.48 166.48 169.22 47.24 42.33 39.92 83.61 78.54 74.18 

-0.45 -0.28 -0.29 0.05 -0.38 -0.99 0.25 -1.30 -0.52 

 

The elastic coefficient results of the specimens are shown 
in Tab. 1. The results show that the relative differences 
between the elastic coefficients measured by the proposed 
method and the reference values are within 2%. 

IV. CONCLUSIONS 

In this paper, a new approach combining RUS with FEM 
and µ-CT is proposed to estimate the elastic coefficients of 
irregularly shaped solid materials. The feasibility and 
accuracy of this method are verified using the titanium 
material. This study provides a feasible solution for the 
elasticity measurement of irregular solid materials. 
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